省钱、省力、省时、省事
完免费、无需舟车劳顿,无论何地、坐在家里或单位内只要能上网即可与国际生物力学名家交流、体验
一线生物力学专家同行汇聚
推动力学生物学的交流与合作
随时随地学习、探讨、交流
学习、交流、探讨生物生物学的科研现状、趋势、临床发展路径、科研实现工具和实现方法方案等
承接细细胞力学和3D生物打印实验服务
· 细胞牵张拉伸应力加载刺激培养
· 细胞组织压力加载刺激培养
· 三维水凝胶细胞组织牵张拉伸应力加载刺激培养服务
· 细胞牵流体剪切应力加载刺激培养服务
· 三维组织细胞灌流培养服务
· 单细胞纳米压痕杨氏模量测试分析服务
· 组织凝胶纳米压痕杨氏模量测试分析服务
· CCII细胞损伤服务
· Microduits微柱阵列细胞应力分布测试服务
· 三维血管、软骨、骨组织、心脏瓣膜、皮肤应力加载培养服务
· 单细胞应力加载、形变测量与力特性分析系统
· regenhu细胞友好型3D生物打印服务
· 静水压力刺激细胞组织培养
· regenhu细胞友好型3D生物打印服务。
定制生物力学实验装置
· 承接细细胞力学和3D生物打印实验服务
诚招各区经销合作商
· 承接细细胞力学和3D生物打印实验服务
细胞生物力学学术研讨会将于2018年4月18日至4月20日在中国北京手都医科大学学术交流中心举办。本次研讨会由手都医科大学生物医学工程学院、临床生物力学应用基础研究北京市重点实验室主办,由世联博研(北京)科技有限公司承办。
一、会议主要议题
生物力学与力学生物学技术交流;细胞组织应力(拉力、压力、流体剪切力)培养、细胞组织机械特性测试分析、细胞组织自主伸缩力及刚度硬细胞组织
三维灌注培养、技术交流等。
二、参会人员
从事细胞力学和力学生物学领域的专家和研究人员
三、会务费
会议统一安排食宿,不收会务费。
四、会务联系人
世联博研(北京)科技有限公司:
王雪娥010-67529703,18210996806,18618101725,13466675923
手都医科大学临床生物力学应用基础研究北京市重点实验室:
王辉010-83911848
纤维丝张力和扭力测 |
自动法向压痕和厚度映射 |
胫骨三维轮廓测试 |
机电活性材料(如结缔组织、带电水凝胶等)压缩过程中电位分布 |
该系统是能集成压缩、张力、剪切、摩擦、扭转和2D/3D压痕、3D轮廓及多力混合耦连测试的一体化微观力学测试装置。能对生物组织、聚合物、凝胶、生物材料、胶囊、粘合剂和食品进行精密可靠的机械刺激和表征。允许表征的机械性能包括刚度、强度、模量、粘弹性、塑性、硬度、附着力、肿胀和松弛位移控制运动。
特点
1、适用样品范围广:
1、适用样品范围广:
1.1、从骨等硬组织材料到脑组织、眼角膜等软组织材料
1.2、从粗椎间盘的样品到细纤维丝
2、通高量压痕测试分析
◆无需表面平坦,可在不规则表面压痕
2.1、三维法向压痕映射非平面样品整个表面的力学特性
2.2、48孔板中压痕测试分析
3、力学类型测试分析功能齐
模块化集成压缩、张力、剪切、摩擦、扭转、穿刺、摩擦和2D/3D压痕、3D表面轮廓、3D厚度等各种力学类型支持,微观结构表征及动态力学分析研究
4、高分辨率:
4.1、位移分辨率达0.1um
4.2、力分辨率 达0.025mN
5、 行程范围广:50-250mm
6、体积小巧、可放入培养箱内
7 、高变分辨率成像跟踪分析
8、多轴向、多力偶联刺激
9、活性组织电位分布测试分析
10、产品成熟,文献量达 上千篇
细胞被均匀地限制/压缩在两个亚微米分辨率的两个平行表面之间。不同的限制高度(例如1um – 300um),允许长期细胞培养和细胞增殖,同时保持对封闭的控制
与高分辨率光学显微镜系统兼容,可以处理足够多的细胞以进行完整的基因表达分析,可与生物功能化的微结构化底物和/或不同的基质(几何形状控制)结合使用
可以与凝胶结合(硬度控制),兼容任何细胞培养底物(培养皿至96孔板)
应用:
Cell migration 2.5D, migration and interaction of non-adhesive cells, cell squeezing, imaging of flat cells (organelles aligned in 2D), super-resolution video-microscopy (organelles move less), contractility assay, etc
Confinement illustration
HeLa cells: not confined, 5 ?m, 3 ?m.
Explore examples of applications
> Cancer invasiveness assay: Quantification of migration behaviors and migration transitions
> Cancer aggressiveness assay: Quantification of contractility of somatic or cancer cells
> Endocytosis assay: Improved observation of events taking place at the membrane
> Exocytosis assay: Improved observation of events taking place at the apical membrane
> Frustrated phagocytosis: Characterization of the mechanism
> Immune system in a well: 2D migration and interaction of non-adherent immune cells
> Immune cells interaction: 2D interaction of non-adherent immune cells
> Mitotic assembly assay: Quantification of mitotic spindle disorders
> Quantitative cell migration assay: Fast and fine analysis of cell migration properties
文献:PUBLICATIONS
承接定制细胞微图案、微沟槽培养检测科研装置、微柱阵列、微针加工制作
销售培训微图案、微沟槽培养检测科研装置、微柱阵列、微针加工制作设备、提供技术培训
欧美进口设备和技术保证!
微柱培养阵列及其特点:
●每张阵列尺寸为3.2 x 3.2 mm,含10 x 18个观测点,每个观测点有170个按六边形排列的微柱
●微柱直径5 μm,高15 μm,中心间距为12 μm
●微柱弹力范围1-3 nN(有其他需求可定制)
●标准涂层是纤维连接蛋白或胶原蛋白I
●细胞外基质(EDM)蛋白包可按找需求定制
软件可用于从光学显微镜拍摄的细胞图片中提取细胞力学参数(力/微柱、微柱坐标、微柱形变、细胞的应变和应力分布等)(图3)。分析结果可保存为Excel表格,便于后续处理。
图3
测量原理:
未变形的微柱在明场图片中呈较亮的圆形,周围是较暗的边,通过霍夫变换可得到其形心。发生变形的微柱呈较暗的半月形,通过图像处理可得到微柱的形变大小(图1)。由于微柱刚度已知,所以进而可得到每根微柱产生的力。
1、荧光倒置显微镜:
主要用于常规活细胞成像,快速高灵敏度活细胞荧光成像,主要包括显微平台,成像系统,工作站
2、微柱阵列培养设备:
将硅胶微柱阵列刻在盖玻片上(图1 A),并包被蛋白,然后置于培养皿中(图1 B)。微柱上需要包被蛋白。标准的包被蛋白有纤连蛋白或I型胶原。若需其他包被蛋白,需提前告知。每张微柱阵列可以分析120-150个细胞,得到的数据足以进行统计学分析。每种实验条件可进行2-3次实验,这样得到的结果会更加稳定。微柱阵列本身并未进行包被,在使用前需要自行包被合适的蛋白(用户自选,可购常用的包被蛋白)。
3、光学减震台
4、预装MicroPost细胞牵引力、内源力分析软件的计算机系统:
软件可用于从光学显微镜拍摄的细胞图片中提取细胞力学参数:(力/微柱、微柱坐标、微柱形变、细胞的应变和应力分布等);
做细胞如下力学特性分析,包括:
1)、微柱形变;
2)、细胞的应变和应力分布
3)、细胞牵引力、内源力(cell active force)
4)、主动收缩力
该系统是一套基于微流控流体压力梯度的、在倒置显微镜的扩展起来的、集成流式细胞仪特性、荧光检测模块、温控模 块、高速成像和数据采集分析软件的高通量单细胞实时形变测量和单细胞力学性质分析系统。
是一种以流式细胞仪的速度检测单个细胞形态和力学性质的技术!
细胞被泵送通过微流控芯片。 每个细胞都被实时拍摄、分析和成像存储。 此外,非破坏性的力量应用于细胞,提供一种方便,稳健和高通量的技术进行生物标志物的检测,可用于基础科学和临床研究。
探索细胞的物理特性作为生物标志物,可以将非破坏性的力量应用于细胞或珠子,并观察它们的变形。 这允许研究对物理压力的te定机械响应。
you势亮点:
机械力学作为一种新的生物标志物--温和无损伤
每个细胞被同时拍照、分析和储存。 这允许通过它们的光学特性来找到小亚群或区分细胞。 另外可以研究像表面拓扑或细胞对光的衰减的形态特性。
每个获取图像的存储
细胞通过微流通道时,提取细胞变形、亮度和大小等参数,同时。 这允许实时地研究细胞属性。
Author | Title | Year | Journal/Proceedings | Reftype | DOI/URL |
---|---|---|---|---|---|
Daskalakis, E., Aslan, E., Liu, F., Cooper, G., Weightman, A., Koç, B., Blunn, G. and Bartolo, P.J. | Composite Scaffolds for Large Bone Defects | 2020 | Progress in Digital and Physical Manufacturing, pp. 250-257 | inproceedings | |
Bertana, V., Catania, F., Cocuzza, M., Ferrero, S., Scaltrito, L. and Pirri, C. | Medical and biomedical applications of 3D and 4D printed polymer nanocomposites | 2020 | 3D and 4D Printing of Polymer Nanocomposite Materials, pp. 325 - 366 | incollection | DOIURL |
Freeman, FE, Browe, DC, Nulty, J, Von Euw, S, Grayson, WL and Kelly, DJ | Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. | 2019 | European Cells & Materials | article | DOIURL |
Loai, S., Kingston, B.R., Wang, Z., Philpott, D.N., Tao, M. and Cheng, H.-L.M. | Clinical Perspectives on 3D Bioprinting Paradigms for Regenerative Medicine
[BibTeX] |
2019 | Regen Med Front. Vol. 1(e190004), pp. e190004 |
article | DOIURL |
Geetha Bai, R., Muthoosamy, K., Manickam, S. and Hilal-Alnaqbi, A. | Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering | 2019 | International journal of nanomedicine Vol. 14(31413573), pp. 5753-5783 |
article | URL |
Zhuang, P., Ng, W.L., An, J., Chua, C.K. and Tan, L.P. | Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications | 2019 | PLOS ONE Vol. 14(6), pp. 1-21 |
article | DOI |
Noor, N., Shapira, A., Edri, R., Gal, I., Wertheim, L. and Dvir, T. | 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts | 2019 | Advanced Science Vol. 0(0), pp. 1900344 |
article | DOI |
Markstedt, K., Håkansson, K., Toriz, G. and Gatenholm, P. | Materials from trees assembled by 3D printing – Wood tissue beyond nature limits | 2019 | Applied Materials Today Vol. 15, pp. 280 - 285 |
article | DOIURL |
Huang, B., Vyas, C., Roberts, I., Poutrel, Q.-A., Chiang, W.-H., Blaker, J.J., Huang, Z. and Bártolo, P. | Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration | 2019 | Materials Science and Engineering: C Vol. 98, pp. 266 - 278 |
article | DOIURL |
Gonzalez-Fernandez, T., Rathan, S., Hobbs, C., Pitacco, P., Freeman, F., Cunniffe, G., Dunne, N., McCarthy, H., Nicolosi, V., O'Brien, F. and Kelly, D. | Pore-forming bioinks to enable Spatio-temporally defined gene delivery in bioprinted tissues | 2019 | Journal of Controlled Release | article | DOIURL |
Gloria, A., Frydman, B., Lamas, M.L., Serra, A.C., Martorelli, M., Coelho, J.F., Fonseca, A.C. and Domingos, M. | The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(ε-caprolactone) scaffolds | 2019 | Materials Science and Engineering: C Vol. 98, pp. 994 - 1004 |
article | DOIURL |
Apelgren, P., Karabulut, E., Amoroso, M., Mantas, A., Martínez Ávila, H., Kölby, L., Kondo, T., Toriz, G. and Gatenholm, P. | In Vivo Human Cartilage Formation in Three-Dimensional Bioprinted Constructs with a Novel Bacterial Nanocellulose Bioink | 2019 | ACS Biomater. Sci. Eng. Vol. 5(5), pp. 2482-2490 |
article | DOI |
Mehrotra, S., Moses, J.C., Bandyopadhyay, A. and Mandal, B.B. | 3D Printing/Bioprinting Based Tailoring of in Vitro Tissue Models: Recent Advances and Challenges | 2019 | ACS Appl. Bio Mater. Vol. 2(4), pp. 1385-1405 |
article | DOI |
Allig, S., Mayer, M., Arrizabalaga, O., Ritter, S., Schroeder, I. and Thielemann, C. | Effect of extrusion-based bioprinting on neurospheres
[BibTeX] |
2019 | GSI-FAIR SCIENTIFIC REPORT 2017School: University of Applied Sciences, BioMEMS Lab, Aschaffenburg, Germany | techreport | URL |
Marques, C.F., Diogo, G.S., Pina, S., Oliveira, J.M., Silva, T.H. and Reis, R.L. | Collagen-based bioinks for hard tissue engineering applications: a comprehensive review | 2019 | Journal of Materials Science: Materials in Medicine Vol. 30(3), pp. 32 |
article | DOI |
Zhou, M., Lee, B.H., Tan, Y.J. and Tan, L.P. | Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing | 2019 | Biofabrication Vol. 11(2), pp. 025011 |
article | DOI |
Rotbaum, Y., Puiu, C., Rittel, D. and Domingos, M. | Quasi-static and dynamic in vitro mechanical response of 3D printed scaffolds with tailored pore size and architectures | 2019 | Materials Science and Engineering: C Vol. 96, pp. 176 - 182 |
article | DOIURL |
Pedrotty, D.M., Volodymyr, K., Erdem, K., Sugrue Alan, M., Christopher, L., Vaidya Vaibhav, R., McLeod Christopher, J., Asirvatham Samuel, J., Paul, G. and Suraj, K. | Three-Dimensional Printed Biopatches With Conductive Ink Facilitate Cardiac Conduction When Applied to Disrupted Myocardium
[BibTeX] |
2019 | Circulation: Arrhythmia and Electrophysiology Vol. 12(3), pp. e006920 |
article | DOI |
Jiang, T., Munguía López, J., Flores-Torres, S., Kort-Mascort, J. and Kinsella, J. | Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication
[BibTeX] |
2019 | Applied Physics Reviews Vol. 6, pp. 011310 |
article | DOI |
Filardo, G., Petretta, M., Cavallo, C., Roseti, L., Durante, S., Albisinni, U. and Grigolo, B. | Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold | 2019 | Bone & Joint Research Vol. 8(2), pp. 101-106 |
article | DOI |
Athanasiadis, M., Pak, A., Afanasenkau, D. and Minev, I.R. | Direct Writing of Elastic Fibers with Optical, Electrical, and Microfluidic Functionality | 2019 | Advanced Materials Technologies Vol. 0(0), pp. 1800659 |
article | DOI |
Sharma, A., Desando, G., Petretta, M., Chawla, S., Bartolotti, I., Manferdini, C., Paolella, F., Gabusi, E., Trucco, D., Ghosh, S. and Lisignoli, G. | Investigating the Role of Sustained Calcium Release in Silk-Gelatin-Based Three-Dimensional Bioprinted Constructs for Enhancing the Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stromal Cells
[BibTeX] |
2019 | ACS Biomater. Sci. Eng. | article | DOI |
Pan, H.M., Chen, S., Jang, T.-S., Han, W.T., Jung, H.-d., Li, Y. and Song, J. | Plant seed-inspired cell protection, dormancy, and growth for large-scale biofabrication | 2019 | Biofabrication Vol. 11(2), pp. 025008 |
article | DOI |
Dooley, M., Prasopthum, A., Liao, Z., Sinjab, F., McLaren, J., Rose, F.R.A.J., Yang, J. and Notingher, I. | Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples | 2019 | Biomed. Opt. Express Vol. 10(4), pp. 1678-1690 |
article | DOIURL |
Zhang, D., Peng, E., Borayek, R. and Ding, J. | Controllable Ceramic Green-Body Configuration for Complex Ceramic Architectures with Fine Features | 2019 | Advanced Functional Materials Vol. 0(0), pp. 1807082 |
article | DOI |
Rathan, S., Dejob, L., Schipani, R., Haffner, B., Möbius, M.E. and Kelly, D.J. | Fiber Reinforced Cartilage ECM Functionalized Bioinks for Functional Cartilage Tissue Engineering | 2019 | Advanced Healthcare Materials Vol. 0(0), pp. 1801501 |
article | DOI |
Alison, L., Menasce, S., Bouville, F., Tervoort, E., Mattich, I., Ofner, A. and Studart, A.R. | 3D printing of sacrificial templates into hierarchical porous materials | 2019 | Scientific Reports Vol. 9(1), pp. 409 |
article | DOI |
Yilmaz, B, Tahmasebifar, A and Baran, ET | Bioprinting Technologies in Tissue Engineering
[BibTeX] |
2019 | Adv Biochem Eng Biotechnol | article | DOI |
Xu, Y., Peng, J., Richards, G., Lu, S. and Eglin, D. | Optimization of electrospray fabrication of stem cell–embedded alginate–gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering | 2019 | Journal of Orthopaedic Translation Vol. 18, pp. 128 - 141 |
article | DOIURL |
Wang, W., Junior, J.R.P., Nalesso, P.R.L., Musson, D., Cornish, J., Mendonça, F., Caetano, G.F. and Bártolo, P. | Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering | 2019 | Materials Science and Engineering: C Vol. 100, pp. 759 - 770 |
article | DOIURL |
Wang, W., Huang, B., Byun, J.J. and Bártolo, P. | Assessment of PCL/carbon material scaffolds for bone regeneration | 2019 | Journal of the Mechanical Behavior of Biomedical Materials Vol. 93, pp. 52 - 60 |
article | DOIURL |
Valot, L., Martinez, J., Mehdi, A. and Subra, G. | Chemical insights into bioinks for 3D printing | 2019 | Chem. Soc. Rev. Vol. 48, pp. 4049-4086 |
article | DOI |
Tondera, C., Akbar, T.F., Thomas, A.K., Lin, W., Werner, C., Busskamp, V., Zhang, Y. and Minev, I.R. | Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping | 2019 | Small Vol. 0(0), pp. 1901406 |
article | DOI |
Shen, J., Wang, W., Zhai, X., Chen, B., Qiao, W., Li, W., Li, P., Zhao, Y., Meng, Y., Qian, S., Liu, X., Chu, P.K. and Yeung, K.W. | 3D-printed nanocomposite scaffolds with tunable magnesium ionic microenvironment induce in situ bone tissue regeneration | 2019 | Applied Materials Today Vol. 16, pp. 493 - 507 |
article | DOIURL |
Schipani, R., Nolan, D.R., Lally, C. and Kelly, D.J. | Integrating finite element modelling and 3D printing to engineer biomimetic polymeric scaffolds for tissue engineering | 2019 | Connective Tissue Research Vol. 0(0), pp. 1-16 |
article | DOI |
Roopavath, U.K., Soni, R., Mahanta, U., Deshpande, A.S. and Rath, S.N. | 3D printable SiO2 nanoparticle ink for patient specific bone regeneration | 2019 | RSC Adv. Vol. 9, pp. 23832-23842 |
article | DOI |
Romanazzo, S., Nemec, S. and Roohani, I. | iPSC Bioprinting: Where are We at? | 2019 | Materials Vol. 12(15) |
article | DOIURL |
Prendergast, M.E. and Burdick, J.A. | Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine | 2019 | Advanced Materials Vol. 0(0), pp. 1902516 |
article | DOI |
Mestre, R., Patiño, T., Barceló, X., Anand, S., Pérez-Jiménez, A. and Sánchez, S. | Force Modulation and Adaptability of 3D-Bioprinted Biological Actuators Based on Skeletal Muscle Tissue | 2019 | Advanced Materials Technologies Vol. 4(2), pp. 1800631 |
article | DOI |
Marchiori, G., Berni, M., Boi, M., Petretta, M., Grigolo, B., Bellucci, D., Cannillo, V., Garavelli, C. and Bianchi, M. | Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA | 2019 | Medical Engineering & Physics Vol. 69, pp. 92 - 99 |
article | DOIURL |
Li, J., Liu, X., Crook, J. and Wallace, G. | 3D graphene-containing structures for tissue engineering | 2019 | Materials Today Chemistry Vol. 14, pp. 100199 |
article | DOIURL |
Kleger, N., Cihova, M., Masania, K., Studart, A.R. and Löffler, J.F. | 3d printing of salt as a template for magnesium with structured porosity | 2019 | advanced materials Vol. 0(0), pp. 1903783 |
article | DOI |
Kjar, A. and Huang, Y. | Application of Micro-Scale 3D Printing in Pharmaceutics | 2019 | Pharmaceutics Vol. 11(8) |
article | DOIURL |
Fenton, O.S., Paolini, M., Andresen, J.L., Müller, F.J. and Langer, R. | Outlooks on Three-Dimensional Printing for Ocular Biomaterials Research | 2019 | Journal of Ocular Pharmacology and Therapeutics Vol. 0(0), pp. null |
article | DOI |
Derr, K., Zou, J., Luo, K., Song, M.J., Sittampalam, G.S., Zhou, C., Michael, S., Ferrer, M. and Derr, P. | Fully 3D Bioprinted Skin Equivalent Constructs with Validated Morphology and Barrier Function | 2019 | Tissue Engineering Part C: Methods Vol. 0(ja), pp. null |
article | DOI |
Daly, A.C. and Kelly, D.J. | Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers | 2019 | Biomaterials Vol. 197, pp. 194 - 206 |
article | DOIURL |
Creusen, G., Roshanasan, A., Garcia Lopez, J., Peneva, K. and Walther, A. | Bottom-up design of model network elastomers and hydrogels from precise star polymers | 2019 | Polym. Chem., pp. - | article | DOI |
Costa, P.F. | Translating Biofabrication to the Market | 2019 | Trends in Biotechnology | article | DOIURL |
Cofiño, C., Perez-Amodio, S., Semino, C.E., Engel, E. and Mateos-Timoneda, M.A. | Development of a Self-Assembled Peptide/Methylcellulose-Based Bioink for 3D Bioprinting | 2019 | Macromolecular Materials and Engineering Vol. 0(0), pp. 1900353 |
article | DOI |
Cernencu, A.I., Lungu, A., Stancu, I.-C., Serafim, A., Heggset, E., Syverud, K. and Iovu, H. | Bioinspired 3D printable pectin-nanocellulose ink formulations | 2019 | Carbohydrate Polymers Vol. 220, pp. 12 - 21 |
article | DOIURL |
Caetano, G., Wang, W., Murashima, A., Passarini, J.R., Bagne, L., Leite, M., Hyppolito, M., Al-Deyab, S., El-Newehy, M., Bártolo, P. and Frade, M.A.C. | Tissue Constructs with Human Adipose-Derived Mesenchymal Stem Cells to Treat Bone Defects in Rats | 2019 | Materials Vol. 12(14) |
article | DOIURL |
Azim, N., Hart, C., Sommerhage, F., Aubin, M., Hickman, J.J. and Rajaraman, S. | Precision Plating of Human Electrogenic Cells on Microelectrodes Enhanced With Precision Electrodeposited Nano-Porous Platinum for Cell-Based Biosensing Applications | 2019 | Journal of Microelectromechanical Systems Vol. 28(1), pp. 50-62 |
article | DOIURL |
Angelopoulos, I., Allenby, M.C., Lim, M. and Zamorano, M. | Engineering inkjet bioprinting processes toward translational therapies | 2019 | Biotechnology and Bioengineering Vol. 0(0) |
article | DOI |
Almeida, H.A., Costa, A.F., Ramos, C., Torres, C., Minondo, M., Bártolo, P.J., Nunes, A., Kemmoku, D. and da Silva, J.V.L. | Additive Manufacturing Systems for Medical Applications: Case Studies | 2019 | Additive Manufacturing -- Developments in Training and Education, pp. 187-209 | inbook | DOIURL |
Khaled, S.A., Alexander, M.R., Irvine, D.J., Wildman, R.D., Wallace, M.J., Sharpe, S., Yoo, J. and Roberts, C.J. | Extrusion 3D Printing of Paracetamol Tablets from a Single Formulation with Tunable Release Profiles Through Control of Tablet Geometry | 2018 | AAPS PharmSciTech Vol. 19(8), pp. 3403-3413 |
article | DOI |
Zamani, Y., Mohammadi, J., Amoabediny, G., Visscher, D.O., Helder, M.N., Zandieh-Doulabi, B. and Klein-Nulend, J. | Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(upepsilon-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds | 2018 | Biomedical Materials Vol. 14(1), pp. 015008 |
article | DOI |
Li, H., Tan, Y.J. and Li, L. | A strategy for strong interface bonding by 3D bioprinting of oppositely charged κ-carrageenan and gelatin hydrogels | 2018 | Carbohydrate Polymers Vol. 198, pp. 261-269 |
article | URL |
Petta, D., Armiento, A.R., Grijpma, D., Alini, M., Eglin, D. and D'Este, M. | 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking | 2018 | Biofabrication Vol. 10(4), pp. 044104 |
article | DOI |
García-Lizarribar, A., Fernández-Garibay, X., Velasco-Mallorquí, F., G. Castaño, A., Samitier, J. and Ramón-Azcón, J. | Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue
[BibTeX] |
2018 | Macromolecular Bioscience Vol. 18, pp. 1800167 |
article | DOI |
Gleadall, A., Visscher, D., Yang, J., Thomas, D. and Segal, J. | Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance | 2018 | Burns & Trauma Vol. 6(1), pp. 19 |
article | DOI |
Gullo, M.R., Koeser, J., Ruckli, O., Eigenmann, A. and Hradetzky, D. | Rapid Prototyping Method for 3D Printed Biomaterial Constructs with Vascular Structures | 2018 | 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5729-5732 | inproceedings | DOI |
Gill, E.L., Li, X., Birch, M.A. and Huang, Y.Y.S. | Multi-length scale bioprinting towards simulating microenvironmental cues | 2018 | Bio-Design and Manufacturing Vol. 1(2), pp. 77-88 |
article | DOI |
Choudhury, D., Anand, S. and Win Naing, M. | The Arrival of Commercial Bioprinters - Towards 3D Bioprinting Revolution!
[BibTeX] |
2018 | International Journal of Bioprinting Vol. 4 |
article | DOI |
Agarwala, S., Lee, J.M., Ng, W.L., Layani, M., Yeong, W.Y. and Magdassi, S. | A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform | 2018 | Biosensors and Bioelectronics Vol. 102(Supplement C), pp. 365 - 371 |
article | DOIURL |
Monzón, M., Liu, C., Ajami, S., Oliveira, M., Donate, R., Ribeiro, V. and Reis, R.L. | Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds
[BibTeX] |
2018 | Bio-Design and Manufacturing Vol. 1(1), pp. 69-75 |
article | DOI |
Tognato, R., Armiento, A.R., Bonfrate, V., Levato, R., Malda, J., Alini, M., Eglin, D., Giancane, G. and Serra, T. | A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Robotics | 2018 | Adv. Funct. Mater. Vol. 29(9), pp. 1804647 |
article | DOI |
Schaffner, M., Faber, J.A., Pianegonda, L., Rühs, P.A., Coulter, F. and Studart, A.R. | 3D printing of robotic soft actuators with programmable bioinspired architectures | 2018 | Nature Communications Vol. 9(1), pp. 878 |
article | DOI |
Raghunath, M., Rimann, M., Kopanska, K. and Laternser, S. | TEDD Annual Meeting with 3D Bioprinting Workshop | 2018 | CHIMIA Vol. 72CHIMIA International Journal for Chemistry, pp. 76-79 |
article | URL |
Prasopthum, A., Shakesheff, K.M. and Yang, J. | Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography | 2018 | Biofabrication Vol. 10(2), pp. 025002 |
article | DOI |
Allig, S., Mayer, M. and Thielemann, C. | Workflow for bioprinting of cell-laden bioink
[BibTeX] |
2018 | Lekar a Technika Vol. 48, pp. 46-51 |
article | URL |
Wang, H., das Neves Domingos, M.A. and Scenini, F. | Advanced mechanical and thermal characterization of 3D bioextruded poly(ε-caprolactone)-based composites | 2018 | Rapid Prototyping Journal Vol. 0(ja), pp. 00-00 |
article | DOI |
Visscher, D.O., Gleadall, A., Buskermolen, J.K., Burla, F., Segal, J., Koenderink, G.H., Helder, M.N. and van Zuijlen, P.P.M. | Design and fabrication of a hybrid alginate hydrogel/poly(ε-caprolactone) mold for auricular cartilage reconstruction | 2018 | Journal of Biomedical Materials Research Part B: Applied Biomaterials Vol. 0(0) |
article | DOI |
Shi, P., Tan, Y.S.E., Yeong, W.Y., Li, H.Y. and Laude, A. | A bilayer photoreceptor‐retinal tissue model with gradient cell density design: A study of microvalve‐based bioprinting | 2018 | Journal of Tissue Engineering and Regenerative Medicine Vol. 12(5), pp. 1297-1306 |
article | DOI |
Schmieg, B., Schimek, A. and Franzreb, M. | Development and performance of a 3D‐printable Polyethylenglycol‐Diacrylate hydrogel suitable for enzyme entrapment and long‐term biocatalytic applications | 2018 | Engineering in Life Sciences Vol. 0(ja) |
article | DOIURL |
de Ruijter Mylène, Alexandre, R., Inge, D., Miguel, C. and Jos, M. | Simultaneous Micropatterning of Fibrous Meshes and Bioinks for the Fabrication of Living Tissue Constructs | 2018 | Advanced Healthcare Materials Vol. 0(0), pp. 1800418 |
article | DOIURL |
Romanazzo, S., Vedicherla, S., Moran, C. and Kelly, D.J. | Meniscus ECM‐functionalised hydrogels containing infrapatellar fat pad‐derived stem cells for bioprinting of regionally defined meniscal tissue | 2018 | Journal of Tissue Engineering and Regenerative Medicine Vol. 12(3), pp. e1826-e1835 |
article | DOI |
Rayate, A. and Jain, P.K. | A Review on 4D Printing Material Composites and Their Applications | 2018 | Materials Today: Proceedings Vol. 5(9, Part 3), pp. 20474 - 20484 |
article | DOIURL |
Pereira, F.D.A.S., Parfenov, V., Khesuani, Y.D., Ovsianikov, A. and Mironov, V. | Commercial 3D Bioprinters | 2018 | 3D Printing and Biofabrication, pp. 535-549 | inbook | DOI |
Peiffer, Q.C. | Biofabrication: Tools for new therapeutics in regenerative medicine and drug delivery | 2018 | School: Queensland University of Technology | mastersthesis | DOIURL |
Park, H.S., Lee, J.S., Jung, H., Kim, D.Y., Kim, S.W., Sultan, M.T. and Park, C.H. | An omentum-cultured 3D-printed artificial trachea: in vivo bioreactor | 2018 | Artificial Cells, Nanomedicine, and Biotechnology Vol. 46(sup3), pp. S1131-S1140 |
article | DOI |
Ng, W.L., Qi, J.T.Z., Yeong, W.Y. and Naing, M.W. | Proof-of-concept: 3D bioprinting of pigmented human skin constructs | 2018 | Biofabrication Vol. 10(2), pp. 025005 |
article | URL |
Ng, W.L., Goh, M.H., Yeong, W.Y. and Naing, M.W. | Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs | 2018 | Biomater. Sci. Vol. 6, pp. 562-574 |
article | DOIURL |
Mouser, V.H.M., Levato, R., Mensinga, A., Dhert, W.J.A., Gawlitta, D. and Malda, J. | Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs | 2018 | Connective Tissue Research Vol. 0(0), pp. 1-15 |
article | DOI |
Liu, F., Hinduja, S. and Bártolo, P. | User interface tool for a novel plasma-assisted bio-additive extrusion system | 2018 | Rapid Prototyping Journal Vol. 24(2), pp. 368-378 |
article | DOI |
Lim, S.H., Kathuria, H., Tan, J.J.Y. and Kang, L. | 3D printed drug delivery and testing systems — a passing fad or the future? | 2018 | Advanced Drug Delivery Reviews Vol. 132, pp. 139 - 168 |
article | DOIURL |
Li, H., Tan, Y.J., Liu, S. and Li, L. | Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding | 2018 | ACS Applied Materials & Interfaces Vol. 10(13), pp. 11164-11174 |
article | DOI |
Li, H., Tan, C. and Li, L. | Review of 3D printable hydrogels and constructs | 2018 | Materials & Design Vol. 159, pp. 20 - 38 |
article | DOIURL |
Lee, M., Bae, K., Guillon, P., Chang, J., Arlov, Ø. and Zenobi-Wong, M. | Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity | 2018 | ACS Applied Materials & Interfaces Vol. 10(44), pp. 37820-37828 |
article | DOI |
Laternser, S., Keller, H., Leupin, O., Rausch, M., Graf-Hausner, U. and Rimann, M. | A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues | 2018 | SLAS TECHNOLOGY: Translating Life Sciences Innovation Vol. 0(0), pp. 2472630318776594 |
article | DOIURL |
Kuzmenko, V., Karabulut, E., Pernevik, E., Enoksson, P. and Gatenholm, P. | Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines | 2018 | Carbohydrate Polymers Vol. 189, pp. 22 - 30 |
article | DOIURL |
Kumari, S., Bargel, H., Anby, M.U., Lafargue, D. and Scheibel, T. | Recombinant Spider Silk Hydrogels for Sustained Release of Biologicals | 2018 | ACS Biomaterials Science & Engineering Vol. 4(5), pp. 1750-1759 |
article | DOI |
Kokkinis, D., Bouville, F. and Studart, A.R. | 3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients | 2018 | Advanced Materials Vol. 30(19), pp. 1705808 |
article | DOI |
Khaled, S.A., Alexander, M.R., Wildman, R.D., Wallace, M.J., Sharpe, S., Yoo, J. and Roberts, C.J. | 3D extrusion printing of high drug loading immediate release paracetamol tablets | 2018 | International Journal of Pharmaceutics Vol. 538(1), pp. 223 - 230 |
article | DOIURL |
Kelder, C., Bakker, A.D., Klein-Nulend, J. and Wismeijer, D. | The 3D Printing of Calcium Phosphate with K-Carrageenan under Conditions Permitting the Incorporation of Biological Components—A Method | 2018 | Journal of Functional Biomaterials Vol. 9(4) |
article | DOIURL |
Huang, Y.-A., Ho, C.T., Lin, Y.-H., Lee, C.-J., Ho, S.-M., Li, M.-C. and Hwang, E. | Nanoimprinted Anisotropic Topography Preferentially Guides Axons and Enhances Nerve Regeneration | 2018 | Macromolecular Bioscience Vol. 0(0), pp. 1800335 |
article | DOI |
Gungor-Ozkerim, P.S., Inci, I., Zhang, Y.S., Khademhosseini, A. and Dokmeci, M.R. | Bioinks for 3D bioprinting: an overview | 2018 | Biomater. Sci. Vol. 6, pp. 915-946 |
article | DOI |
Gretzinger, S., Beckert, N., Gleadall, A., Lee-Thedieck, C. and Hubbuch, J. | 3D bioprinting – Flow cytometry as analytical strategy for 3D cell structures | 2018 | Bioprinting Vol. 11, pp. e00023 |
article | DOIURL |
Fortunato, G.M., Maria, C.D., Eglin, D., Serra, T. and Vozzi, G. | An ink-jet printed electrical stimulation platform for muscle tissue regeneration | 2018 | Bioprinting Vol. 11, pp. e00035 |
article | DOIURL |
Firth, J., Basit, A.W. and Gaisford, S. | The Role of Semi-Solid Extrusion Printing in Clinical Practice | 2018 | 3D Printing of Pharmaceuticals, pp. 133-151 | inbook | DOI |
Daly, A.C., Pitacco, P., Nulty, J., Cunniffe, G.M. and Kelly, D.J. | 3D printed microchannel networks to direct vascularisation during endochondral bone repair | 2018 | Biomaterials Vol. 162, pp. 34 - 46 |
article | DOIURL |
Couck, S., Saint-Remi, J.C., der Perre, S.V., Baron, G.V., Minas, C., Ruch, P. and Denayer, J.F. | 3D-printed SAPO-34 monoliths for gas separation | 2018 | Microporous and Mesoporous Materials Vol. 255(Supplement C), pp. 185 - 191 |
article | DOIURL |
Chinga-Carrasco, G. | Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices | 2018 | Biomacromolecules Vol. 19(3), pp. 701-711 |
article | DOI |
Caetano, G.F., Wang, W., Chiang, W.-H., Cooper, G., Diver, C., Blaker, J.J., Frade, M.A. and Bártolo, P. | 3D-Printed Poly(ɛ-caprolactone)/Graphene Scaffolds Activated with P1-Latex Protein for Bone Regeneration | 2018 | 3D Printing and Additive Manufacturing Vol. 0(0), pp. null |
article | DOIURL |
Bastola, A., Paudel, M. and Li, L. | Development of hybrid magnetorheological elastomers by 3D printing | 2018 | Polymer Vol. 149, pp. 213 - 228 |
article | DOIURL |
Banerjee, H. and Ren, H. | Electromagnetically Responsive Soft-Flexible Robots and Sensors for Biomedical Applications and Impending Challenges | 2018 | Electromagnetic Actuation and Sensing in Medical Robotics, pp. 43-72 | inbook | DOI |
Aied, A., Song, W., Wang, W., Baki, A. and Sigen, A. | 3D Bioprinting of stimuli-responsive polymers synthesised from DE-ATRP into soft tissue replicas | 2018 | Bioprinting | article | DOIURL |
Suntornnond, R., Tan, E., An, J. and Chua, C. | A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures | 2017 | Scientific Reports Vol. 7(16902) |
article | DOIURL |
Schroeder, T.B.H., Guha, A., Lamoureux, A., VanRenterghem, G., Sept, D., Shtein, M., Yang, J. and Mayer, M. | An electric-eel-inspired soft power source from stacked hydrogels | 2017 | Nature Vol. 552, pp. 214 |
article | DOI |
Nguyen, D., Hägg, D., Forsman, A., Ekholm, J., Nimkingratana, P., Brantsing, C., Kalogeropoulos, T., Zaunz, S., Concaro, S., Brittberg, M., Lindahl, A., Gatenholm, P., Enejder, A. and Simonsson, S. | Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink | 2017 | Scientific Reports Vol. 7Scientific Reports |
article | DOI |
Freeman, F.E. and Kelly, D.J. | Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues | 2017 | Scientific Reports Vol. 7(1), pp. 17042 |
article | DOI |
Levato, R., Webb, W.R., Otto, I.A., Mensinga, A., Zhang, Y., van Rijen, M., van Weeren, R., Khan, I.M. and Malda, J. | The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells
[BibTeX] |
2017 | Acta Biomaterialia Vol. 61(Supplement C), pp. 41-53 |
article | URL |
Bertlein, S., Brown, G., Lim, K., Jungst, T., Boeck, T., Blunk, T., Tessmar, J., J. Hooper, G., Woodfield, T. and Groll, J. | Thiol-Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies | 2017 | Advanced Materials | article | DOI |
Mancini, I., Vindas Bolaños, R., Brommer, H., Castilho, M., Ribeiro, A., van Loon, J., Mensinga, A., Rijen, M., Malda, J. and van Weeren, P. | Fixation of hydrogel constructs for cartilage repair in the equine model: a challenging issue | 2017 | Tissue Engineering Part C: Methods | article | DOI |
Cunniffe, G., Gonzalez-Fernandez, T., Daly, A., Nelson Sathy, B., Jeon, O., Alsberg, E. and J. Kelly, D. | Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering | 2017 | Tissue Engineering Part ATissue Engineering Part A | article | DOI |
Abbadessa, A., Landín, M., Oude Blenke, E., Hennink, W.E. and Vermonden, T. | Two-component thermosensitive hydrogels: Phase separation affecting rheological behavior | 2017 | European Polymer Journal Vol. 92(Supplement C), pp. 13-26 |
article | URL |
D'Amora, U., D'Este, M., Eglin, D., Safari, F., Sprecher, C., Gloria, A., De Santis, R., Alini, M. and Ambrosio, L. | Collagen Density Gradient on 3D Printed Poly(ε-Caprolactone) Scaffolds for Interface Tissue Engineering
[BibTeX] |
2017 | Journal of tissue engineering and regenerative medicine Vol. 12 |
article | DOI |
Bastola, A.K., Hoang, V.T. and Li, L. | A novel hybrid magnetorheological elastomer developed by 3D printing | 2017 | Materials & Design Vol. 114(Supplement C), pp. 391-397 |
article | URL |
Zeng, Q., Macri, L., Prasad, A., Clark, R., Zeugolis, D., Hanley, C., Garcia, Y., Pandit, A., Leavesley, D., Stupar, D., Fernandez, M., Fan, C. and Upton, Z. | 6.20 Skin Tissue Engineering☆ | 2017 | Comprehensive Biomaterials II\, pp. 334 - 382 | incollection | DOIURL |
Thamm, C., DeSimone, E. and Scheibel, T. | Characterization of Hydrogels Made of a Novel Spider Silk Protein eMaSp1s and Evaluation for 3D Printing | 2017 | Macromolecular Bioscience Vol. 17(11), pp. 1700141-n/a |
article | DOIURL |
Sultan, S., Siqueira, G., Zimmermann, T. and Mathew, A.P. | 3D printing of nano-cellulosic biomaterials for medical applications | 2017 | Current Opinion in Biomedical Engineering Vol. 2(Supplement C), pp. 29 - 34 |
article | DOIURL |
Stichler, S., Böck, T., Paxton, N.C., Bertlein, S., Levato, R., Schill, V., Smolan, W., Malda, J., Tessmar, J., Blunk, T. and Groll, J. | Double printing of hyaluronic acid / poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis | 2017 | Biofabrication | article | DOI |
Sommer, M.R., Alison, L., Minas, C., Tervoort, E., Ruhs, P.A. and Studart, A.R. | 3D printing of concentrated emulsions into multiphase biocompatible soft materials | 2017 | Soft Matter Vol. 13, pp. 1794-1803 |
article | DOI |
Siqueira, G., Kokkinis, D., Libanori, R., Hausmann, M.K., Gladman, A.S., Neels, A., Tingaut, P., Zimmermann, T., Lewis, J.A. and Studart, A.R. | Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures | 2017 | Advanced Functional Materials Vol. 27(12), pp. 1604619-n/a |
article | DOI |
Schaffner, M., Rühs, P.A., Coulter, F., Kilcher, S. and Studart, A.R. | 3D printing of bacteria into functional complex materials | 2017 | Science Advances Vol. 3(12) |
article | DOIURL |
Ribeiro, A., Blokzijl, M.M., Levato, R., Visser, C.W., Castilho, M., Hennink, W.E., Vermonden, T. and Malda, J. | Assessing bioink shape fidelity to aid material development in 3D bioprinting | 2017 | Biofabrication | article | DOI |
Reitmaier, S., Kovtun, A., Schuelke, J., Kanter, B., Lemm, M., Hoess, A., Heinemann, S., Nies, B. and Ignatius, A. | Strontium(II) and mechanical loading additively augment bone formation in calcium phosphate scaffolds | 2017 | Journal of Orthopaedic Research, pp. n/a-n/a | article | DOI |
Peng, W., Datta, P., Ayan, B., Ozbolat, V., Sosnoski, D. and Ozbolat, I.T. | 3D bioprinting for drug discovery and development in pharmaceutics | 2017 | Acta Biomaterialia Vol. 57, pp. 26 - 46 |
article | DOIURL |
Paxton, N.C., Smolan, W., Böck, T., Melchels, F.P.W., Groll, J. and Juengst, T. | Proposal to Assess Printability of Bioinks for Extrusion-Based Bioprinting and Evaluation of Rheological Properties Governing Bioprintability | 2017 | Biofabrication | article | DOI |
Mouser, V.H.M., Abbadessa, A., Levato, R., Hennink, W.E., Vermonden, T., Gawlitta, D. and Malda, J. | Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs | 2017 | Biofabrication Vol. 9(1), pp. 015026 |
article | URL |
Lorson, T., Jaksch, S., Lübtow, M.M., Jüngst, T., Groll, J., Lühmann, T. and Luxenhofer, R. | A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink | 2017 | Biomacromolecules Vol. 18(7), pp. 2161-2171 |
article | DOI |
Ligon, S.C., Liska, R., Stampfl, J., Gurr, M. and Mülhaupt, R. | Polymers for 3D Printing and Customized Additive Manufacturing | 2017 | Chemical Reviews Vol. 117(15), pp. 10212-10290 |
article | DOI |
Liao, Z., Sinjab, F., Nommeots-Nomm, A., Jones, J., Ruiz-Cantu, L., Yang, J., Rose, F. and Notingher, I. | Feasibility of Spatially Offset Raman Spectroscopy for in Vitro and in Vivo Monitoring Mineralization of Bone Tissue Engineering Scaffolds | 2017 | Analytical Chemistry Vol. 89(1), pp. 847-853 |
article | DOI |
Kuzmenko, V. | Cellulose-derived conductive nanofibrous materials for energy storage and tissue engineering Applications
[BibTeX] |
2017 | School: Department of Microtechnology and Nanoscience CHALMERS UNIVERSITY OF TECHNOLOGY | phdthesis | URL |
Huang, Y., Zhang, X.-F., Gao, G., Yonezawa, T. and Cui, X. | 3D bioprinting and the current applications in tissue engineering | 2017 | Biotechnology Journal Vol. 12(8), pp. 1600734-n/a |
article | DOI |
Henriksson, I., Gatenholm, P. and Hägg, D.A. | Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds | 2017 | Biofabrication Vol. 9(1), pp. 015022 |
article | URL |
DeSimone, E., Schacht, K., Pellert, A. and Scheibel, T. | Recombinant spider silk-based bioinks | 2017 | Biofabrication Vol. 9(4), pp. 044104 |
article | URL |
Dalton, P.D. | Melt electrowriting with additive manufacturing principles | 2017 | Current Opinion in Biomedical Engineering Vol. 2(Supplement C), pp. 49 - 57 |
article | DOIURL |
Choi, Y., Yi, H., Kim, S. and Cho, D. | 3D Cell Printed Tissue Analogues: A New Platform for Theranostics | 2017 | Theranostics | article | URL |
Charbe, N.B., McCarron, P.A., Lane, M.E. and Tambuwala, M.M. | Application of three-dimensional printing for colon targeted drug delivery systems | 2017 | International Journal of Pharmaceutical Investigation Vol. 7(2), pp. 47-59 |
article | URL |
Borovjagin, A.V., Ogle, B.M., Berry, J.L. and Zhang, J. | From Microscale Devices to 3D Printing | 2017 | Circulation Research Vol. 120(1), pp. 150-165 |
article | DOIURL |
Baumann, B., Jungst, T., Stichler, S., Feineis, S., Wiltschka, O., Kuhlmann, M., Lindén, M. and Groll, J. | Control of Nanoparticle Release Kinetics from 3D Printed Hydrogel Scaffolds | 2017 | Angewandte Chemie International Edition, pp. n/a-n/a | article | DOI |
Aljohani, W., Ullah, M.W., Zhang, X. and Yang, G. | Bioprinting and its applications in tissue engineering and regenerative medicine | 2017 | International Journal of Biological Macromolecules | article | DOIURL |
Bastola, A., Hoang Tan, V. and Lin, L. | Magnetorheological Elastomer: A novel approach of synthesis | 2016 | 2ND INTERNATIONAL CONFERENCE IN SPORTS SCIENCE & TECHNOLOGY, At NTU, Singapore | conference | URL |
Durual, S. | Impression 3D et régénération osseuse, un mariage plein d'avenir
[BibTeX] |
2016 | Biomateriaux Cliniques Vol. 1BioMatériaux Cliniques, pp. 58-61 |
article | URL |
Gudapati, H., Dey, M. and Ozbolat, I. | A comprehensive review on droplet-based bioprinting: Past, present and future. | 2016 | Biomaterials Vol. 102, pp. 20-42 |
article | URL |
Sears, N.A., Seshadri, D.R., Dhavalikar, P.S. and Cosgriff-Hernandez, E. | A Review of Three-Dimensional Printing in Tissue Engineering | 2016 | Tissue Engineering Part B: Reviews Vol. 22(4), pp. 298-310 |
article | DOI |
Wang, W., Caetano, G., Chiang, W.-H., Sousa, A.L., Blaker, J., Frade, M.A.R.C.O., Frade, C. and Jorge Bártolo, P. | Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration | 2016 | International Journal of Bioprinting Vol. 2, pp. 95-105 |
article | URL |
Visscher, D.O., Bos, E.J., Peeters, M., Kuzmin, N.V., Groot, M.L., Helder, M.N. and van Zuijlen, P.P.M. | Cartilage Tissue Engineering: Preventing Tissue Scaffold Contraction Using a 3D-Printed Polymeric Cage. | 2016 | Tissue engineering Part C, Methods Vol. 22, pp. 573-84 |
article | URL |
Stichler, S., Jungst, T., Schamel, M., Zilkowski, I., Kuhlmann, M., Bock, T., Blunk, T., Tessmar, J. and Groll, J. | Thiol-ene Clickable Poly(glycidol) Hydrogels for Biofabrication. | 2016 | Annals of biomedical engineering | article | URL |
Kesti, M., Fisch, P., Pensalfini, M., Mazza, E. and Zenobi-Wong, M. | Guidelines for standardization of bioprinting: a systematic study of process parameters and their effect on bioprinted structures | 2016 | BioNanoMaterials Vol. 17(3-4), pp. 193-204 |
article | DOI |
Durual, S. | Emergence d'une nouvelle génération de substituts osseux synthétiques imprimés en 3D
[BibTeX] |
2016 | BIOMATERIAUX D’AUJOURD’HUI ET DE DEMAINBI Vol. Hors-sérieJournal de parodontologie et d'implantologie orale, pp. 63-67 |
article | URL |
Khati, V., Kellomäki, M. and Anderson, H.S. | Development of a Robust Decellularized Extracellular Matrix Bioink for 3D Bioprinting | 2016 | School: Tampere University of Technology | mastersthesis | |
Wu, C., Wang, B., Zhang, C., Wysk, R.A. and Chen, Y.-W. | Bioprinting: an assessment based on manufacturing readiness levels | 2016 | Critical Reviews in Biotechnology Vol. 0(0), pp. 1-22 |
article | DOI |
Wang, W.G., Chang, W.H. and Bartolo, P.J. | Design, fabrication and evaluation of pcl-graphene scaffolds for bone regeneration | 2016 | Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016) | conference | DOI |
Visscher, D.O., Farré-Guasch, E., Helder, M.N., Gibbs, S., Forouzanfar, T., van Zuijlen, P.P. and Wolff, J. | Advances in Bioprinting Technologies for Craniofacial Reconstruction | 2016 | Trends in Biotechnology Vol. 34(9), pp. 700-710 |
article | DOI |
Suntornnond, R., Tan, E.Y.S., An, J. and Chua, C.K. | A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks | 2016 | Materials Vol. 9(9), pp. 756 |
article | DOIURL |
Suntornnond, R., An, J. and Chua, C.K. | A Preliminary Study on the Extrusion Resolution of Pluronic F127 for Bioprinting Thermo-responsive Hydrogel Constructs | 2016 | Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016) | conference | URL |
Sommer, M.R., Schaffner, M., Carnelli, D. and Studart, A.R. | 3D Printing of Hierarchical Silk Fibroin Structures | 2016 | ACS Applied Materials & Interfaces Vol. 8(50), pp. 34677-34685 |
article | DOI |
Ruiz-Cantu, L., Gleadall, A., Faris, C., Segal, J., Shakesheff, K. and Yang, J. | Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing | 2016 | Biofabrication Vol. 8(1), pp. 015016 |
article | URL |
Raphael, B., Khalil, T., Workman, V.L., Smith, A., Brown, C.P., Streulli, C., Saiani, A. and Domingos, M. | 3D cell bioprinting of self-assembling peptide-based hydrogels | 2016 | Materials Letters | article | DOIURL |
Passamai, V.E., Dernowsek, J.A., Nogueira, J., Lara, V., Vilalba, F., Mironov, V.A., Rezende, R.A. and da Silva, J.V. | From 3D Bioprinters to a fully integrated Organ Biofabrication Line | 2016 | Journal of Physics: Conference Series Vol. 705(1), pp. 012010 |
article | URL |
Ozbolat, I.T., Peng, W. and Ozbolat, V. | Application areas of 3D bioprinting | 2016 | Drug Discovery Today Vol. 21(8), pp. 1257-1271 |
article | DOIURL |
Ozbolat, I.T., Moncal, K.K. and Gudapati, H. | Evaluation of bioprinter technologies | 2016 | Additive Manufacturing | article | DOIURL |
Ozbolat, I.T. and Hospodiuk, M. | Current advances and future perspectives in extrusion-based bioprinting | 2016 | Biomaterials Vol. 76, pp. 321-343 |
article | DOIURL |
Ng, W.L., Yeong, W.Y. and Naing, M.W. | Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering | 2016 | International Journal of Bioprinting Vol. 2(1) |
article | DOIURL |
Müller, M., Öztürk, E., Arlov, Ø., Gatenholm, P. and Zenobi-Wong, M. | Alginate Sulfate--Nanocellulose Bioinks for Cartilage Bioprinting Applications | 2016 | Annals of Biomedical Engineering, pp. 1-14 | article | DOI |
Minas, C., Carnelli, D., Tervoort, E. and Studart, A.R. | 3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics | 2016 | Advanced Materials Vol. 28(45), pp. 9993-9999 |
article | DOI |
Melchels, F.P.W., Blokzijl, M.M., Levato, R., Peiffer, Q.C., de Ruijter, M., Hennink, W.E., Vermonden, T. and Malda, J. | Hydrogel-based reinforcement of 3D bioprinted constructs | 2016 | Biofabrication Vol. 8(3), pp. 035004 |
article | URL |
Hou, X., Liu, S., Wang, M., Wiraja, C., Huang, W., Chan, P., Tan, T. and Xu, C. | Layer-by-Layer 3D Constructs of Fibroblasts in Hydrogel for Examining Transdermal Penetration Capability of Nanoparticles | 2016 | Journal of Laboratory Automation | article | DOIURL |
Hölzl, K., Lin, S., Tytgat, L., Vlierberghe, S.V., Gu, L. and Ovsianikov, A. | Bioink properties before, during and after 3D bioprinting | 2016 | Biofabrication Vol. 8(3), pp. 032002 |
article | URL |
Heinzelmann, E. | Olten Meeting 2015 Antibiotics and Bioprinting for a better life | 2016 | CHIMIA International Journal for Chemistry Vol. 70(1), pp. 112-115 |
article | DOIURL |
Håkansson, K.M.O., Henriksson, I.C., de la Peña Vázquez, C., Kuzmenko, V., Markstedt, K., Enoksson, P. and Gatenholm, P. | Solidification of 3D Printed Nanofibril Hydrogels into Functional 3D Cellulose Structures | 2016 | Advanced Materials Technologies Vol. 1(7), pp. 1600096-n/a |
article | DOI |
Gu, B.K., Choi, D.J., Park, S.J., Kim, M.S., Kang, C.M. and Kim, C.-H. | 3-dimensional bioprinting for tissue engineering applications | 2016 | Biomaterials Research Vol. 20(1), pp. 12 |
article | DOI |
Gross, B., Lockwood, S.Y. and Spence, D.M. | Recent Advances in Analytical Chemistry by 3D Printing
[BibTeX] |
2016 | Analytical Chemistry Vol. 0(0) |
article | DOI |
Geven, M.A., Sprecher, C., Guillaume, O., Eglin, D. and Grijpma, D.W. | Micro-porous composite scaffolds of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite prepared by low-temperature extrusion-based additive manufacturing | 2016 | Polymers for Advanced Technologies | article | DOI |
Daly, A.C., Cunniffe, G.M., Sathy, B.N., Jeon, O., Alsberg, E. and Kelly, D.J. | 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering | 2016 | Advanced Healthcare Materials Vol. 5(18), pp. 2353-2362 |
article | DOI |
Daly, A.C., Critchley, S.E., Rencsok, E.M. and Kelly, D.J. | A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage | 2016 | Biofabrication Vol. 8(4), pp. 045002 |
article | URL |
Carrel, J., Wiskott, A., Scherrer, S. and Durual, S. | Large Bone Vertical Augmentation Using a Three‐Dimensional Printed TCP/HA Bone Graft: A Pilot Study in Dog Mandible | 2016 | Clinical Implant Dentistry and Related Research Vol. 18(6), pp. 1183-1192 |
article | DOI |
Caetano, G., Violante, R., Sant’Ana, A.B., Murashima, A.B., Domingos, M., Gibson, A., Bártolo, P. and Frade, M.A. | Cellularized versus decellularized scaffolds for bone regeneration | 2016 | Materials Letters Vol. 182, pp. 318-322 |
article | DOIURL |
Ávila, H.M., Schwarz, S., Rotter, N. and Gatenholm, P. | 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration | 2016 | Bioprinting Vol. 1–2, pp. 22-35 |
article | DOIURL |
Arslan-Yildiz, A., Assal, R.E., Chen, P., Guven, S., Inci, F. and Demirci, U. | Towards artificial tissue models: past, present, and future of 3D bioprinting | 2016 | Biofabrication Vol. 8(1), pp. 014103 |
article | URL |
Abbadessa, A., Mouser, V.H.M., Blokzijl, M.M., Gawlitta, D., Dhert, W.J.A., Hennink, W.E., Malda, J. and Vermonden, T. | A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides | 2016 | Biomacromolecules Vol. 17(6), pp. 2137-2147 |
article | DOI |
Abbadessa, A., Blokzijl, M., Mouser, V., Marica, P., Malda, J., Hennink, W. and Vermonden, T. | A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications | 2016 | Carbohydrate Polymers Vol. 149, pp. 163-174 |
article | DOIURL |
Kokkinis, D., Schaffner, M. and Studart, A.R. | Multimaterial magnetically assisted 3D printing of composite materials
[BibTeX] |
2015 | Nature Communications Vol. 6, pp. 8643 |
article | DOI |
Rimann, M., Bono, E., Annaheim, H., Bleisch, M. and Graf-Hausner, U. | Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells. | 2015 | Journal of laboratory automation Vol. 21, pp. 496-509 |
article | DOI |
Ho, C.M.B., Ng, S.H. and Yoon, Y.-J. | A review on 3D printed bioimplants | 2015 | International Journal of Precision Engineering and Manufacturing Vol. 16(5), pp. 1035-1046 |
article | DOI |
Moussa, M., Carrel, J.-P., Scherrer, S., Cattani-Lorente, M., Wiskott, A. and Durual, S. | Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation | 2015 | Materials Vol. 8Materials, pp. 2174 |
article | DOIURL |
Markstedt, K., Mantas, A., Tournier, I., Martínez Ávila, H., Hägg, D. and Gatenholm, P. | 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications | 2015 | Biomacromolecules Vol. 16(5), pp. 1489-1496 |
article | DOI |
Knoll, S. | Niere aus dem Drucker? Sag niemals nie | 2015 | Medizin&Technik Vol. 01(02), pp. 44-47 |
article | URL |
Rimann, M., Laternser, S., Keller, H., Leupin, O. and Graf-Hausner, U. | 3D Bioprinted Muscle and Tendon Tissues for Drug Development
[BibTeX] |
2015 | CHIMIA International Journal for Chemistry Vol. 69(1), pp. 65-67 |
article | DOI |
Horvath, L., Umehara, Y., Jud, C., Blank, F., Petri-Fink, A. and Rothen-Rutishauser, B. | Engineering an in vitro air-blood barrier by 3D bioprinting. | 2015 | Scientific reports Vol. 5, pp. 7974 |
article | |
Tan, E.Y.S. and Yeong, W.Y. | Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique | 2015 | International Journal of Bioprinting Vol. 1, pp. 49-56 |
article | |
Schuddeboom, M. | Biofabrication of Perfusable Liver Constructs
[BibTeX] |
2015 | School: Utrecht University - Faculty of Veterinary Medicine | mastersthesis | URL |
Schacht, K., Jüngst, T., Schweinlin, M., Ewald, A., Groll, J. and Scheibel, T. | Biofabrication of Cell-Loaded 3D Spider Silk Constructs | 2015 | Angewandte Chemie International Edition Vol. 54(9), pp. 2816-2820 |
article | DOI |
Müller, M., Becher, J., Schnabelrauch, M. and Zenobi-Wong, M. | Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting | 2015 | Biofabrication Vol. 7(3), pp. 035006 |
article | URL |
Khaled, S.A., Burley, J.C., Alexander, M.R., Yang, J. and Roberts, C.J. | 3D printing of tablets containing multiple drugs with defined release profiles | 2015 | International Journal of Pharmaceutics Vol. 494(2), pp. 643-650 |
article | DOIURL |
Khaled, S.A., Burley, J.C., Alexander, M.R., Yang, J. and Roberts, C.J. | 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles | 2015 | Journal of Controlled Release Vol. 217, pp. 308-314 |
article | DOIURL |
Kesti, M., Eberhardt, C., Pagliccia, G., Kenkel, D., Grande, D., Boss, A. and Zenobi-Wong, M. | Bioprinting Complex Cartilaginous Structures with Clinically Compliant Biomaterials | 2015 | Advanced Functional Materials Vol. 25(48), pp. 7406-7417 |
article | DOI |
Hockaday, L. | 3D Bioprinting: A Deliberate Business
[BibTeX] |
2015 | Genetic Engineering & Biotechnology News Vol. 35(1), pp. 14-17 |
article | DOI |
Graf-Hausner, U., Rimann, M., Bono, E., Laternser, S. and Bleisch, M. | A novel multiwell device for drug development with bioprinted 3D human tendon and skeletal muscle tissues | 2015 | poster | URL | |
Chee Kai Chua, K.F.L. | 3D Printing and Additive Manufacturing
[BibTeX] |
2014 | book | URL | |
Rimann, M. and Graf-Hausner, U. | Bioprinting und in vitro-Modelle zur Wirkstoffentwicklung | 2014 | poster | URL | |
Markstedt, K., Tournier, I., Mantas, A., Hägg, D. and Gatenholm, P. | 3D BIOPRINTING OF LIVING TISSUE WITH NANOCELLULOSE “INK”- CELLINK | 2014 | poster | ||
Kesti, M., Müller, M., Becher, J., Schnabelrauch, M., D’Este, M., Eglin, D. and Zenobi-Wong, M. | A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation | 2014 | Acta Biomaterialia Vol. 11, pp. 162-172 |
article | DOIURL |
Carrel, J.-P., Wiskott, A., Moussa, M., Rieder, P., Scherrer, S. and Durual, S. | A 3D printed TCP/HA structure as a new osteoconductive scaffold for vertical bone augmentation | 2014 | Clinical Oral Implants Research Vol. 27(1), pp. 55-62 |
article | DO |
Rezende, R.A., Selishchev, S.V., Kasyanov, V.A., da Silva, J.V.L. and Mironov, V.A. | An Organ Biofabrication Line: Enabling Technology for Organ Printing. Part II: from Encapsulators to Biofabrication Line | 2013 | Biomedical Engineering Vol. 47(4), pp. 213-218 |
article | DOI |
Müller, M., Becher, J., Schnabelrauch, M. and Zenobi-Wong, M. | Printing thermoresponsive reverse molds for the creation of patterned two-component hydrogels for 3D cell culture. | 2013 | Journal of visualized experiments : JoVE, pp. 1-9 | article | URL |
RegenHU | Product information: 3D organomimetic models for tissue engineering
[BibTeX] |
2013 | Biotechnology Journal Vol. 8(3), pp. 283-283 |
article | DOI |
Müller, M., Studer, D., Maniura-Weber, K. and Zenobi-Wong, M. | Novel bioprinted co-culture system fro investigating chondrogenesis
[BibTeX] |
2012 | poster | ||
Graf-Hausner, U., Rimann, M. and Annaheim, H. | Skin Bioprinting: an innovative approach to produce standardized skin models on demand | 2012 | poster | URL | |
Bleisch, M., Kuster, M., Thurner, M., Meier, C., Bossen, A. and Graf-Hausner, U. | Organomimetic skin model production based on a novel bioprinting technology | 2012 | poster | URL |
世联博研(北京)科技有限公司
世联博研客服中心 联系方式:
Email地址:slby800@163.com
邮寄地址:北京市昌平区回龙观镇上奥世纪中心2A座9层906,邮编:100096
开户银行:上海浦东发展银行北京通州支行,帐号:91390154740000493
开户银行:邮政储蓄银行北京丰台支行,帐号:1004-8156-3080-010-001
开户银行:中国建设银行北京海淀中关村支行,帐号:6227-0000-1085-0278-575
开户银行:中国工商银行北京海淀支行,帐号:9558-8002-0015-1927270
一、关于世联博研(北京)科技有限公司
世联博研(北京)科技有限公司,世联博研以自身丰富的生物科研知识、大量生物科研技术/商务综合型复合人才(10名生物学博士,15名生物医药专业研究生)、多年和中科院/生物医药基地商务合作经验以及良好广泛的海外关系(欧美、德国、以色列有自己的专职海外代表),代理合作国际生物科研领域近300家厂家品牌产品(ABGENE, ABNOVA, AGRISERA,AMBION, ANCELL,BIOIND, BIOSEARCHTECH, BIOVISION,BIOWORLDE, CALTAGMEDSYSTEMS,CELLSIGNAL, CELL_TRANSFECTION, CLONTECH, DOJINDO,EBIOSCIENCE, EPIGENTEK, EPITOMICS, EXBIO_CZ,FITZGERALD_FII,FRONTIERSCI,GOLDBIO,KENTSCIENTIFIC,KISKER_BIOTECH,LABSAFETY,MBLINTL,MOBIO,NANOAMOR,NEB,NIBSC_AC,NOVUSBIO,PALL,PELFREEZ_BIO,PHYTOTECHLAB,PIERCENET,PIERCE_ANTIBODIES,POLYSCIENCES,QORPAK,QUALITYBIOLOGICAL,SLBY,REAGENTS,RNDSYSTEMS,ROCKLAND_INC,SABIOSCIENCES,SIGMAALDRICH,SPHEROTECH,STREM,SUNNYLAB,TEDIA,THERMOSCIENTIFIC,THERMO,TOCRIS,等国际生物品牌产品,产品涉及生物试剂、生物耗材、生物科研仪器—世联博研(北京)科技有限公司专注国际生物产品(试剂、医药、科研耗材、科研仪器)原装进口
二、代理条件:
1、理机构必须具有企业经营实体,有长期市场管理和推广技巧能力的工作人员,能立进行财务结算。同时能在其管理区域
的市场进行代理产品的推广、客户开发、销售、维护等工作。
2、有良好大学高校、中学实验室关系、良好的医院/诊所关系、良好的研究院/所关系;
3、有良好生物医药领域知识人才者更佳;
4、公司无不良记录;
5、热爱、专注生物科研事业;
三、代理费用:
申请成为世联博研(北京)科技有限公司的代理商,签订一年的产品代理协议,不收取任何代理加盟费,代理有责任在所属区域内主动宣传产品功能,每个月完成5000元(人民币 )产品的销售任务,连续两个月没有销售业绩的停止代理商积分功能,代理资格保留。半年无销售业绩的,自动解除代理协议。
四、代理权限:
1、代理商在所属市区域范围内销售,不得跨省分/城市销售。
2、可以代理世联博研任何产品;
3、享受世联统一的客户服务和售后维护资源;
4、赠送有业务能力良好的生物医药版《企业业管管理系统》,功能 包括,采购订货管理、报价管理、合同管理、人事管理、
出入库管理、财务往来管理、系统权限设置管理等
5、世联博研实行代理商商务积分制度,凭积分可直接兑换现金
详情垂询国免费客服电话:,010-67529703,索取代理商政策