产品名称世联博研inovenso纳米纤维纺丝机应用之一化妆品用纳米纤维:纳米技术提高了化妆品的质量
品牌inovenso
产品货号世联博研inovenso纳米纤维纺丝机应用之一化妆品用纳米纤维:纳米技术提高了化妆品的质量
产品价格现货询价
联系人董先生
联系电话13215512868
产品说明

高效纳米纤维化妆品

纳米技术提高了化妆品产品的质量,它们通过插入纳米乳液、纳米颜料、纳米脂质体、纳米粒子和纳米纤维等纳米材料而得到增强。个人护理化妆品产品,如洗发水、面膜、保湿霜、古铜色、防晒霜、抗衰老霜是含有纳米结构材料的化妆品的一些例子。

为什么在化妆品中使用纳米纤维?

  • 活性成分的简单有效运输:(如维生素)通过纳米乳液到达皮肤。
  • 纳米脂质体包裹了化妆品中使用的生物活性剂,使产品不会堵塞皮肤毛孔,并且易于渗透空气和水溶性材料。
  • 高保留水平:由于它们的增强te性,例如小孔径和高孔隙率,它们可以吸收大量液体。
  • 透气材料:由于其透氧透水te性,可用作清洁剂、保湿剂等透气化妆品。
  • 更深的输送:纳米纤维的大表面积还增加了网眼和皮肤之间的接触表面,从而有效地将活性剂输送到更深的皮肤部分。

纳米纤维化妆品的例子

透明质酸

 刺激胶原蛋白的产生
缓解皮肤干燥
减少眼部细纹
刺激皮肤细胞再生

维生素C

 具有抗氧化te性
在胶原蛋白合成中发挥
作用 对皮肤细胞有益
有助于打造更年轻、更紧致的皮肤

水杨酸

减少原发性病变的数量
帮助疏通毛孔以解决病变
防止未来痤疮爆发

芦荟

提供抗炎作用
减少浮肿的眼袋。
帮助治愈皮肤
防止鱼尾纹和干燥
对抗自由基,有助于防止皮肤老化

我们提供什么?

Inovenso 不仅提供适用于生产基于纳米纤维的化妆品产品的工业机械,而且我们还提供启动即插即用生产所需的完整 A 到 Z 包装。

由于我们的研发团队拥有广泛的知识和专业知识,我们能够为客户和合作伙伴提供适合他们需求的研发服务。服务shou先确定开发所需产品所需的正确材料和成分,以实现其所需te性(抗衰老、美白、保湿……)。此外,在我们的一揽子计划范围内,我们还提供技术转让服务,将我们的科技研究成果以及与知识产权管理相关的相关技能和程序传递到市场。

Inovenso 的研发团队致力于推进静电纺丝领域的研究和开发用于纳米纤维应用的新型产品。对于化妆品行业,我们的工程师和科学家团队在设计纳米纤维支架方面拥有丰富的经验,用于治疗和补充皮肤中嵌入的有益营养物质。

我们的团队与对从概念验证到产品开发等项目感兴趣的客户积ji参与研发服务。具体来说,静电纺丝纳米纤维和嵌入式纳米粒子可用于化妆品、生物医学和过滤等各个行业。对于化妆品应用,我们已深入研究设计含有营养成分的眼贴和面膜,以净化皮肤,并在某些情况下治疗痤疮。

除了研发服务,如果产品已经由我们或您du立制造,我们可以提供合同制造服务,我们将您的纳米纤维产品批量生产到商业化规模。我们的设施由工业级静电纺丝机组成,可满足客户每月对单位的需求。

比较表

参考文献:

1.      Turan C U, Guvenilir Y. Electrospun Poly (ω-pentadecalactone-co-ε-caprolactone)/Gelatin/Chitosan Ternary Nanofibers with Antibacterial Activity for Treatment of Skin Infections[J]. European Journal of Pharmaceutical Sciences, 2022: 106113.

2.      Ionescu O M, Iacob A T, Mignon A, et al. Design, preparation and in vitro characterization of biomimetic and bioactive chitosan/polyethylene oxide based nanofibers as wound dressings[J]. International Journal of Biological Macromolecules, 2021, 193: 996-1008.

3.      Acik G, Acik B, Agel E. Layer-by-Layer Assembled, Amphiphilic and Antibacterial Hybrid Electrospun Mat Made from Polypropylene and Chitosan Fibers[J]. Journal of Polymers and the Environment, 2021: 1-10.

4.      Vergara-Figueroa J, Alejandro-Martin S, Cerda-Leal F, et al. Dual electrospinning of a nanocomposites biofilm: Potential use as an antimicrobial barrier[J]. Materials Today Communications, 2020, 25: 101671.

5.      Madub K, Goonoo N, Gimié F, et al. Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering[J]. Carbohydrate Polymers, 2021, 251: 117025.

6.      Gao Y, Bach Truong Y, Zhu Y, et al. Electrospun antibacterial nanofibers: Production, activity, and in vivo applications[J]. Journal of Applied Polymer Science, 2014, 131(18).

7.      Balaconis M K, Luo Y, Clark H A. Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions[J]. Analyst, 2015, 140(3): 716-723.

8.      DUZYER S, HOCKENBERGER A, Agah U, et al. Effect of ethylene oxide, autoclave and ultra violet sterilizations on surface topography of PET electrospun fibers[J]. Uluda? University Journal of The Faculty of Engineering, 2016, 21(2): 201-218.

9.      Cerkez I, Sezer A, Bhullar S K. Fabrication and characterization of electrospun poly (e-caprolactone) fibrous membrane with antibacterial functionality[J]. Royal Society open science, 2017, 4(2): 160911.

10.    Aksoy O E, Ates B, Cerkez I. Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination[J]. Journal of Materials Science, 2017, 52(17): 10013-10022.

11.    POLAT N H, ?zlem K A P, Farzaneh A. Anticorrosion coating for magnesium alloys: electrospun superhydrophobic polystyrene/SiO2 composite fibers[J]. Turkish Journal of Chemistry, 2018, 42(3): 672-683.

12.    Aktürk A, Taygun M E, Güler F K, et al. Fabrication of antibacterial polyvinylalcohol nanocomposite mats with soluble starch coated silver nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562: 255-262.

13.    Arik N, Inan A, Ibis F, et al. Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma: alignment, antibacterial activity, and biocompatibility[J]. Polymer Bulletin, 2019, 76(2): 797-812.

14.    Abdali Z, Logsetty S, Liu S. Bacteria-responsive single and core–shell nanofibrous membranes based on polycaprolactone/poly (ethylene succinate) for on-demand release of biocides[J]. ACS omega, 2019, 4(2): 4063-4070.

15.    Ferna?ndez J, Ruiz-Ruiz M, Sarasua J R. Electrospun fibers of polyester, with both nano-and micron diameters, loaded with antioxidant for application as wound dressing or tissue engineered scaffolds[J]. ACS Applied Polymer Materials, 2019, 1(5): 1096-1106.

16.    Gurler E B, Ergul N M, Ozbek B, et al. Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material[J]. Materials Science and Engineering: C, 2019, 100: 798-808.

17.    Sanchez-Rexach E, Iturri J, Fernandez J, et al. Novel biodegradable and non-fouling systems for controlled-release based on poly (ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings[J]. RSC advances, 2019, 9(42): 24154-24163.


世联博研(北京)科技有限公司

京ICP备19044772号-1
京ICP备19044772号-2


客服电话::400-650-8506 (86)-010-67529703
(86)-010-57129146   (86)-010-82986680
传真号码:(86)-010-57129142
市场部信箱:sales@bio-goods.com
技术部信箱:tech@bio-goods.com
人事部信箱:jobs@bio-goods.com

单位地址:北京市昌平区建材西路87号2号楼9层2单元906