世联博研北京公司作为美国xonamicrofluidics代商,提醒注意假冒产品,耽误研究


原厂验证网址:https://xonamicrofluidics.com/contact/


美国XonaMicrofluidics公司神经元突触轴突培养板 现货供应

型号:内详
价格:请致电:010-67529703
品牌:xonamicrofluidics

美国XonaMicrofluidics公司神经元突触轴突培养板 现货供应

订货号

简述

货物状态

XC150

XonaChip 150 um barrier 5PK

includes 2 ml tube XC Pre-Coat

现货促销

XC450

XonaChip 450 um barrier 5PK

includes 2 ml tube XC Pre-Coat

现货促销

XC900

XonaChip 900 um barrier 5PK

includes 2 ml tube XC Pre-Coat

现货促销

XC-T500

XonaChip  500 um central compartment

includes (2) 2 ml tubes XC Pre-Coat

现货促销

XC-T1000

XonaChip 1000 um central compartment

includes (2) 2 ml tubes XC Pre-Coat

现货促销

XonaPDL

Optimized poly-d-lysine solution for Xona platforms

现货促销

RD150

Round Device 150 um barrier 5PK

现货促销

RD450

Round Device 450 um barrier 5PK

现货促销

RD900

Round Device 900 um barrier 5PK

现货促销

SND150

Standard Neuron Device 150 um barrier 5PK

现货促销

SND450

Standard Neuron Device 450 um barrier 5PK

现货促销

SND900

Standard Neuron Device 900 um barrier 5PK

现货促销

TCND500

Triple Compartment 500 um central compartment 5PK

现货促销

TCND1000

Triple Compartment 1000 um central compartment 5PK

现货促销

RD75

Round Device 75 um barrier 5PK

现货促销

SND75

Standard Neuron Device 75 um barrier 5PK

现货促销

uLP

Microfluidic Local Perfusion Device 5PK

现货促销

货号

产品描述

RD150

Round Device (150 um microgroove barrier)
Size: ~ 21 mm diameter
Our round device version of the standard 150 um microgroove barrier has an approximate diameter of 21 mm, making it compatible with some 35 mm glass bottom dishes that many researchers use in live cell imaging systems. Glass bottom dishes used should have an inner aperture of 21 mm or more to accommodate the device. At least 22 mm is recommended in order to have room to position the device. Larger glass bottom dishes can be used, as well as glass cover slips, if desired.

RD450

Round Device (450 um microgroove barrier)
Size: ~ 21 mm diameter
Our round device version of the standard 450 um microgroove barrier has an approximate diameter of 21 mm, making it compatible with some 35 mm glass bottom dishes that many researchers use in live cell imaging systems. Glass bottom dishes used should have an inner aperture of 21 mm or more to accommodate the device. At least 22 mm is recommended in order to have room to position the device. Larger glass bottom dishes can be used, as well as glass cover slips, if desired.

RD900

Round Device (900 um microgroove barrier)
Size: ~ 21 mm diameter
Our round device version of the standard 900 um microgroove barrier has an approximate diameter of 21 mm, making it compatible with some 35 mm glass bottom dishes that many researchers use in live cell imaging systems. Glass bottom dishes used should have an inner aperture of 21 mm or more to accommodate the device. At least 22 mm is recommended in order to have room to position the device. Larger glass bottom dishes can be used, as well as glass cover slips, if desired.

SND150

Standard Neuron Device (150 um microgroove barrier)
Size: ~ 22 mm ¨C ~23mm
The 150 um neuron device with its shorter microgroove barrier is suitable for researchers who would like to isolate both axons and dendrites. It is also suitable for certain neuronal cultures that do not grow long processes.
Researchers who wish to study the early events of axonal and dendritic growth may also find the 150 um device useful. The 150 um device also offers the benefits of fluidic isolation and culture organization for transport studies.

SND450

Standard Neuron Device (450 um microgroove barrier)
Size: ~ 22 mm ¨C ~23mm
The 450 um neuron device is our most popular device. For most applications it is suitable for separating cell bodies from axons. After two weeks, dendrites in E18 rat cortical neurons have typically not crossed the microgroove barrier.
The 450 um neuron device also provides the added features of fluidic isolation and culture organization for transport studies.

SND900

Standard Neuron Device (900 um microgroove barrier)
Size: ~ 22 mm ¨C ~23mm
The 900 um neuron device, with its wide microgroove barrier, is suitable for researchers who would like to perform long term experiments while ensuring axonal isolation. In some cultures, after two weeks of growth dendrites may cross the 450 um barrier thereby necessitating the use of the 900 um device.It is also suitable for certain neuronal cultures which grow long processes. Researchers who also wish to make sure they are isolating 100% axons only in the distal chamber may also find the 900 um device useful. The 900 um device also offers the benefits of fluidic isolation and culture organization for transport studies.

TCND500

Triple Chamber Neuron Device (500 um microgroove barrier)
Size: ~ 38 mm ¨C ~24mm
The TCND500 consists of (2) 500 um microgroove barriers with a 500 um central chamber. This device makes it possible to culture cortical neurons in the left and right chambers while culturing hippocampal neurons, or other combinations of cells, in the middle. The triple chamber is also suitable for transport studies where the researcher wishes to treat the middle of the axon growing in the middle chamber while observing effects at the growth cone or in the somal compartment. Neurons can also be loaded in the central chamber and different treatments applied to the left and right compartments.

TCND1000

Triple Chamber Neuron Device (1000 um microgroove barrier)
Size: Size: ~ 38 mm ¨C ~24mm
The TCND1000 consists of (2) 500 um microgroove barriers with a 1000 um central chamber. This device makes it possible to culture cortical neurons in the left and right chambers while culturing hippocampal neurons, or other combinations of cells, in the middle. The triple chamber is also suitable for transport studies where the researcher wishes to treat the middle of the axon growing in the middle chamber while observing effects at the growth cone or in the somal compartment. Neurons can also be loaded in the central chamber and different treatments applied to the left and right compartments.

uLP

Microfluidic Local Perfusion Device barrier, (50 um microgroove 75 micron perfusion channel, 500 um microgroove barrier)
Size: ~ 40 mm ¨C ~24 mm
Our Microfluidic Local Perfusion Chamber was first published in Neuron. 2010 Apr 15;66(1):57-68. This device has a 75 micron perfusion chamber with a set of microgrooves on the left 50 um in width and a set of microgrooves on the right 500 um in width. This device, in conjuction with a syringe pump or other suitable equipment, allows the researcher to perfuse selected treatments and compounds across the target area. Syringe pump or other suitable equipment required for proper use. For more indepth information please see Neuron. 2010 Apr 15;66(1):57-68.

2018

Activated Protein C blocks the inhibitory effect on neurite outgrowth by extracellular histones that mediates its inhibition through a retrograde YB-1 signal
July 9, 2018

Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy.
FASEB J. 2018 Jun 22:fj201800597R. doi: 10.1096/fj.201800597R. [Epub ahead of print]

Microfluidics of Small-Population Neurons Allows for a Precise Quantification of the Peripheral Axonal Growth State
Front Cell Neurosci. 2018; 12: 166. June 15, 2018

Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering.
Biomaterials. 2018 May 11. pii: S0142-9612(18)30347-8. doi: 10.1016/j.biomaterials.2018.05.012. [Epub ahead of print]

Neuronal subtype determines HSV-1 Latency-Associated-Transcript (LAT) promoter activity during latency.
J Virol. 2018 Apr 11. pii: JVI.00430-18. doi: 10.1128/JVI.00430-18. [Epub ahead of print]

Axonal Activation of the Unfolded Protein Response Promotes Axonal Regeneration Following Peripheral Nerve Injury.
Neuroscience. 2018 Apr 1;375:34-48. doi: 10.1016/j.neuroscience.2018.02.003. Epub 2018 Feb 10.

Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons.
Acta Neuropathol Commun. 2018 Feb 15;6(1):10. doi: 10.1186/s40478-018-0514-4.

Neurturin is a PGC-1a1-controlled myokine that promotes motor neuron recruitment and neuromuscular junction formation.
Mol Metab. 2018 Jan;7:12-22. doi: 10.1016/j.molmet.2017.11.001. Epub 2017 Nov 7.

Importin α1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons.
PLoS Pathog. 2018 Jan 5;14(1):e1006823. doi: 10.1371/journal.ppat.1006823. eCollection 2018 Jan.

Visualization of local phosphatidylcholine synthesis within hippocampal neurons using a compartmentalized culture system and imaging mass spectrometry
Biochem Biophys Res Commun. 2018 Jan 1;495(1):1048-1054. doi: 10.1016/j.bbrc.2017.11.108. Epub 2017 Nov 21.

Intercellular transfer of pathogenic a-synuclein by extracellular vesicles is induced by the lipid peroxidation product 4-hydroxynonenal
Neurobiol Aging. 2018 Jan;61:52-65. doi: 10.1016/j.neurobiolaging.2017.09.016. Epub 2017 Sep 22.

2017

Distal axotomy enhances retrograde presynaptic excitability onto injured pyramidal neurons via trans-synaptic signaling.
Nat Commun. 2017 Sep 20;8(1):625.

Microfluidic Device for Studying Traumatic Brain Injury
Part of the Neuromethods book series (NM, volume 126) First Online: 12 May 2017

Mild and repetitive very mild axonal stretch injury triggers cystoletal mislocalization and growth cone collapse
PLoS One. 2017; 12(5): e0176997. Published online 2017 May 4.

Using high-throughput barcode sequencing to efficiently map connectomes
Nucleic Acids Res. 2017 Jul 7. 45(12): e115. Published online 2017 Apr 26

Messenger RNAs localized to distal projections of human stem cell derived neurons.
Sci Rep 7. 2017 Apr 4;7(1):611. Published online

NGF-dependent axon growth and regeneration are altered in sympathetic neurons of dystrophic mdx mice.
Mol Cell Neurosci. 2017 Feb 2;80:1-17 [Epub ahead of print]

T-type Ca2+ channels are required for enhanced sympathetic axon growth by TNFα reverse signaling Open Biology. Published 18 January 2017.DOI: 10.1098/rsob.160288

The release and trans-synaptic transmission of Tau via exosomes
Mol Neurodegener. 2017; 12: 5. Published online 2017 Jan 13.

MiR-29c/PRKCI Regulates Axonal Growth of Dorsal Root Ganglia Neurons Under Hyperglycemia.
Mol Neurobiol. 2017 Jan 9. [Epub ahead of print]

Co-culture Synaptogenic Assay: A New Look at Fluorescence Reporters and Technological Devices.
Methods Mol Biol. 2017;1538:13-27qua

2016

Acetylated tubulin is essential for touch sensation in mice
eLife. 2016; 5: e20813. Published online 2016 Dec 13

Mesenchymal Stromal Cells Promote Axonal Outgrowth Alone and Synergistically with Astrocytes via tPA
PLoS One. 2016; 11(12): e0168345. Published online 2016 Dec 13.

Compartmentalized Microfluidic Platforms: The Unrivaled Breakthrough of In Vitro Tools for Neurobiological Research.
J Neurosci. 2016 Nov 16;36(46):11573-11584.

Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3
Science. 2016 Sep 30; 353(6307): aah3374.

TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington’s disease
Proc Natl Acad Sci U S A. 2016 Sep 20; 113(38): E5655–E5664. Published online 2016 Sep 6.

Interneuronal Transfer and Distal Action of Tetanus Toxin and Botulinum Neurotoxins A and D in Central Neurons.
Cell Rep. 2016 Aug 16;16(7):1974-87. doi: 10.1016/j.celrep.2016.06.104. Epub 2016 Aug 4.

Probing extracellular Sonic hedgehog in neurons.
Biol Open. 2016 Aug 15;5(8):1086-92. doi: 10.1242/bio.019422.

Leucine Zipper-bearing Kinase promotes axon growth in mammalian central nervous system neurons
Sci Rep. 2016; 6: 31482. Published online 2016 Aug 11.

miR-145 Regulates Diabetes-Bone Marrow Stromal Cell-Induced Neurorestorative Effects in Diabetes Stroke Rats.
Stem Cells Transl Med. 2016 Jul 26. pii: sctm.2015-0349. [Epub ahead of print]

Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons.
Tissue Eng Part A. 2016 Jun;22(11-12):850-61. doi: 10.1089/ten.TEA.2016.0008.

A New Defective Helper RNA to Produce Recombinant Sindbis Virus that Infects Neurons but does not Propagate
Front Neuroanat. 2016; 10: 56. Published online 2016 May 24. doi: 10.3389/fnana.2016.00056

Monitoring mRNA Translation in Neuronal Processes Using Fluorescent Non-Canonical Amino Acid Tagging.
J Histochem Cytochem. 2016 May;64(5):323-33. doi: 10.1369/0022155416641604. Epub 2016 Mar 29.

MicroRNA 146a locally mediates distal axonal growth of dorsal root ganglia neurons under high glucose and sildenafil conditions.
Neuroscience. 2016 Aug 4;329:43-53. doi: 10.1016/j.neuroscience.2016.05.005. Epub 2016 May 7.

Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain.
Elife. 2016 Apr 15;5. pii: e12151. doi: 10.7554/eLife.12151.

Exosomes Derived from Mesenchymal Stromal Cells Promote Axonal Growth of Cortical Neurons.
Mol Neurobiol. 2016 Mar 19. [Epub ahead of print]

The RNA-binding protein SFPQ orchestrates an RNA regulon to promote axon viability.
Nat Neurosci. 2016 May;19(5):690-6. doi: 10.1038/nn.4280. Epub 2016 Mar 28.

Quantitative and semi-quantitative measurements of axonal degeneration in tissue and primary neuron cultures
J Neurosci Methods. 2016 Jun 15; 266: 32–41. Published online 2016 Mar 28.

Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport.
PLoS One. 2016 Jan 20;11(1):e0147250. doi: 10.1371/journal.pone.0147250. eCollection 2016.

Compartmentalized Platforms for Neuro-Pharmacological Research.
Curr Neuropharmacol. 2016;14(1):72-86.

D-4F Decreases White Matter Damage After Stroke in Mice
Stroke. 2016 Jan;47(1):214-20. doi: 10.1161/STROKEAHA.115.011046. Epub 2015 Nov 24.

2015

Dual Role of Herpes Simplex Virus 1 pUS9 in Virus Anterograde Axonal Transport and Final Assembly in Growth Cones in Distal Axons.
J Virol. 2015 Dec 23;90(5):2653-63. doi: 10.1128/JVI.03023-15.

The Basic Domain of Herpes Simplex Virus 1 pUS9 Recruits Kinesin-1 To Facilitate Egress from Neurons.
J Virol. 2015 Dec 9;90(4):2102-11. doi: 10.1128/JVI.03041-15.

Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation
J Neurosci. 2015 Dec 9; 35(49): 16126–16141.

MicroRNAs in the axon locally mediate the effects of chondroitin sulfate proteoglycans and cGMP on axonal growth
Dev Neurobiol. 2015 Dec; 75(12): 1402–1419. Published online 2015 Jun 24.

Whole transcriptome profiling reveals the RNA content of motor axons
Nucleic Acids Res. 2016 Feb 29; 44(4): e33. Published online 2015 Oct 12.

Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation. Cell Rep. 2015 May 26;11(8):1176-83

Morphometric assessment of toxicant induced neuronal degeneration in full and restricted contact co-cultures of embryonic cortical rat neurons and astrocytes: using m-Dinitrobezene as a model neurotoxicant. Toxicol In Vitro. 2015 Apr;29(3):564-74.

Coupled local translation and degradation regulate growth cone collapse
Nat Commun. 2015; 6: 6888. Published online 2015 Apr 22.

Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type a J Neurosci. 2015 Apr 15;35(15):6179-94

Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics. Front Behav Neurosci. 2015 Mar 11;9:62.

Identifying the primary site of pathogenesis in amyotrophic lateral sclerosis – vulnerability of lower motor neurons to proximal excitotoxicity
Dis Model Mech. 2015 Mar; 8(3): 215–224.

Recording large extracellular spikes in microchannels along many axonal sites from individual neurons. PLoS One. 2015 Mar 3;10(3):e0118514.

Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord. Cell Mol Life Sci. 2015 Feb 24.

A ?-secretase inhibitor, but not a ?-secretase modulator, induced defects in BDNF axonal trafficking and signaling: evidence for a role for APP. PLoS One. 2015 Feb 24;10(2):e0118379.

2014

Herpes simplex virus gE/gI extracellular domains promote axonal transport and spread from neurons to epithelial cells. J Virol. 2014 Oct;88(19):11178-86.

PTEN inhibition enhances neurite outgrowth in human embryonic stem cell-derived neuronal progenitor cells. J Comp Neurol. 2014 Aug 15;522(12):2741-55.

A-synuclein immunotherapy blocks uptake and templated propagation of misfolded a-synuclein and neurodegeneration. Cell Rep. 2014 Jun 26;7(6):2054-65.

Regulation of axon growth by the JIP1-AKT axis. Dajas-Bailador F, Bantounas I, Jones EV, Whitmarsh AJ. J Cell Sci. 2014 Jan 1;127(Pt 1):230-9.

2013

Probing functional properties of nociceptive axons using a microfluidic culture system. PLoS One. 2013 Nov 20;8(11)

Microfluidic primary culture model of the lower motor neuron-neuromuscular junction circuit. J Neurosci Methods. 2013 Sep 15;218(2):164-9.

Dendritic GluN2A synthesis mediates activity-induced NMDA receptor insertion. J Neurosci. 2013 May 15;33(20):8898-908.

ProNGF promotes neurite growth from a subset of NGF-dependent neurons by a p75NTR-dependent mechanism. Development. 2013 May;140(10):2108-17.

The MicroRNA-17-92 cluster enhances axonal outgrowth in embryonic cortical neurons. J Neurosci. 2013 Apr 17;33(16):6885-94.

Axonal translation of β-catenin regulates synaptic vesicle dynamics. J Neurosci. 2013 Mar 27;33(13):5584-9.

Target-derived neurotrophins coordinate transcription and transport of bclw to prevent axonal degeneration. J Neurosci. 2013 Mar 20;33(12):5195-207.

Herpes simplex virus membrane proteins gE/gI and US9 act cooperatively to promote transport of capsids and glycoproteins from neuron cell bodies into initial axon segments. J Virol. 2013 Jan;87(1):403-14

Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem. 2013 Jan 18;288(3):1856-70.

2012

Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann Neurol. 2012 Oct;72(4):517-24.

Axonal outgrowth and dendritic plasticity in the cortical peri-infarct area after experimental stroke. Stroke. 2012 Aug;43(8):2221-8.

A herpes simplex virus 1 (McKrae) mutant lacking the glycoprotein K gene is unable to infect via neuronal axons and egress from neuronal cell bodies. MBio. 2012 Jul 24;3(4):e00144-12.

Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation repressor. Genes Dev. 2012 Jul 15;26(14):1527-32.

Assembly and maintenance of nodes of ranvier rely on distinct sources of proteins and targeting mechanisms. Neuron. 2012 Jan 12;73(1):92-107.

Chronic excitotoxin-induced axon degeneration in a compartmented neuronal culture model. ASN Neuro. 2012 Feb 23;4(1).

Chemical genetic-mediated spatial regulation of protein expression in neurons reveals an axonal function for wld(s). Chem Biol. 2012 Feb 24;19(2):179-87.

Microfluidics Platforms for Investigating Injury and Regeneration of CNS Axons. Ann Biomed Eng. 2012 Jun;40(6):1268-76.

2011

Microfluidic and Compartmentalized platforms for neurobiological research. Crit Rev Biomed Eng. 2011;39(3):185-200.

Neurotrophin-mediated dendrite-to-nucleus signaling revealed by microfluidic compartmentalization of dendrites. Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11246-51.

Lanosterol induces mitochondrial uncoupling and protects dopaminergic neurons from cell death in a model for Parkinson’s disease. Cell Death Differ. 2012 Mar;19(3):416-27.

The bovine herpesvirus type 1 envelope protein Us9 acidic domain is crucial for anterograde axonal transport. Vet Microbiol. 2011 Sep 28;152(3-4):270-9.

IL-1β inhibits axonal growth of developing sympathetic neurons. Mol Cell Neurosci. 2011 Oct;48(2):142-50.

Micro-scale and microfluidic devices for neurobiology. Curr Opin Neurobiol. 2010 Oct;20(5):640-7.

Examination of axonal injury and regeneration in micropatterned neuronal culture using pulsed laser microbeam dissection. Lab Chip. 2010 Aug 21;10(16):2083-92.

Anterograde transport of herpes simplex virus capsids in neurons by both Separate and Married mechanisms. J Virol. 2011 Jun;85(12):5919-28.

Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA. 2011 Jan;17(1):85-98.

Regulation of trafficking of activated TrkA is critical for NGF-mediated functions. Traffic. 2011 Apr;12(4):521-34.

2010

Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron. 2010 Apr 15;66(1):57-68.

2009

Shear stress effect on transfection of neurons cultured in microfluidic devices. J Nanosci Nanotechnol. 2009 Dec;9(12):7330-5.

Novel microfluidic platform for culturing neurons: culturing and biochemical analysis of neuronal components. Biotechnol J. 2009 Nov;4(11):1573-7.

Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nat Cell Biol. 2009 Aug;11(8):1024-30.

beta-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol Aging. 2011 May;32(5):821-33.

Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci. 2009 Apr 15;29(15):4697-707.

Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron. 2009 Mar 26;61(6):880-94.

2008

A microfluidic chamber for analysis of neuron-to-cell spread and axonal transport of an alpha-herpesvirus. PLoS One. 2008 Jun 18;3(6):e2382.

2006

Microfluidic chambers for cell migration and neuroscience research. Methods Mol Biol. 2006;321:167-77.

Microfluidic culture platform for neuroscience research. Nat Protoc. 2006;1(4):2128-36.

2005

A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods. 2005 Aug;2(8):599-605.

世联博研北京公司作为美国xonamicrofluidics代商,提醒注意假冒产品,耽误研究


原厂验证网址:https://xonamicrofluidics.com/contact/