型号:SP100
联系人:陈宝华
联系电话:13060393900
品牌:sonidel
SONIDEL超声波转染平台SP100
SP100超声波转染仪采用超声波原理,具有安性,可靠性,灵活性,高效性。适用于临床试验研究中的基因转染(gene transfection)和药物转运(drug delivery)领域。
主要特点:
● 安性:因为超声波可以应用于临床,所以仪器采用超声波原理转染,可以保证后期临床试验研究的安性。
● 灵活性:超声波转染仪的传感器模块具有自我校正功能,此模块可以更换。
● 可用于聚焦超声研究(FUS):具有高强度聚焦超声传感器模块。
o 可以结合微泡使用:仪器结合微泡(Microbubbles)使用,可以提高转染效率;并且使用te殊的微泡可以靶向te定细胞。
应用范围:
适用于动物细胞的体外转染,以及动物体内转染(包括子宫内或卵巢内等)。
1.原代细胞和细胞株系,如:HFLS-RA,Hela,KATOⅢ,MKN-45,CHO,NIH / 3T3,HL-60,C1271,T24,小鼠腹水,大鼠膀胱,PC3,U937等。
2.小鼠(小鼠)的大脑,肺,肝脏,肾脏,脾脏,血管,脊髓,皮肤,齿龈,腹膜,关节,足垫,耳朵等。
3.小鼠胚胎(Mouse Fetal)的大脑,肺,心脏,肝脏,肠,羊膜等。
4.大鼠(大鼠)的小肠,大肠,唾腺,视网膜,角膜。
5.家兔(兔)的视网膜,角膜等。
6.蜜蜂(蜜蜂)的大脑等。
7.非洲爪蟾蜍(非洲爪蟾)。
8.家蚕(家蚕)的血细胞,丝腺,中肠,脂肪垫,马氏管,卵巢,睾丸等。
特征
1、输出频率
输出频率j确固定在1 MHz,以化和可重复地穿透组织培养容器和基于组织的目标。3MHz可选
2、超声功率/密度选项
超声功率密度/强度选项在0和5W/cm2之间 ,可以0.1W/cm2进行调整。
3、占空比范围
各种占空比范围为5 - 100%,增量为5%,脉冲频率为100 Hz。
4、自动化治疗控制时间
自动控制治疗时间,可在数秒内调整至90秒的治疗时间,此后在数分钟内直至治疗时间为60分钟。
5、水封超声头
超声波头是水密封的,并且与液体中的操作浸没兼容。
6、预编程的治疗参数
提供10个操作程序,其中5个预先编程为适当的治疗参数,以通过SONIDEL STK实现佳的超声介导转染,配备10个阳性对照转染试剂盒。其他5个程序可以根据操作员选择的te定条件进行调整
7、超声剂量反馈控制
超声头配备有反馈控制,如果与目标接触并且超声波传输到目标,则自动关闭计时器。在这种情况下,定时器倒计时机制将在接触受损的准确时间停止并发出声音警报。
8、可定制的功能
可能会提供自定义功能
150天,小鼠后腿进行体内超声转染 |
转染Hela细胞后EGFP体外超声表达 |
|
|
使用Sonidel超声转染平台进行体内基因转移 |
使用Sonidel超声转染平台进行体外基因转移 |
规格参数
频率: |
连续和脉冲超声波,佳预设j确频率为1 MHz。3MHz可选 |
显示: |
强度W/cm2(SATP *) |
接触控制阈值: |
65% |
处理时间显示和控制按钮: |
0 - 90秒然后切换到分钟(2-60),耦合到接触控制。为了增强操作员控制和反馈,如果与目标的足够的声学超声接触受到损害,时间显示将停止倒计时。这允许操作员识别目标的j确时间-在超声头与目标之间接触失败的情况下暴露于超声波。 |
超声波,连续: |
100 Hz/100% 0 - 5 W/cm2,可以0.1Wcm2的增量调节 |
超声波,脉冲: |
100 Hz/5-100%,5%增量 0 - 5 W/cm2,可以0.1 Wcm2的增量调节 |
处理头: 1 MHz,标准 |
几何表面积1.5cm2,直径1.38cm,ERA ** 0.8cm2,BNR ***大。6型准直,侧板辐射大。10 mW/cm2 |
电源适配器: |
100 - 240伏 50/60赫兹 40 VA |
安等级: |
* II符合IEC 60601-1 |
外形尺寸: |
220 x 200 x 195毫米 |
重量: |
1.7千克 |
CE标志: |
**** |
安标准: |
IEC 60601-1和IEC 60601-2-5 |
运输和储存的环境条件: |
-10°至+ 50°C 10至100% 500至1060 hPa |
正常使用环境条件: |
10°至40°C 10至90%(非冷凝) 500至1060 hPa |
* |
SATP =空间平均时间峰值(平均脉冲功率) |
代表性文献
代表性文献
1 Gemcitabine loaded microbubbles for targeted chemo-sonodynamic therapy of pancreatic cancer. Nesbitt H, Sheng Y, Kamila S, Logan K, Thomas K, Callan B, Taylor MA, Love M, O'Rourke D, Kelly P, Beguin E, Stride E, McHale AP, Callan JF. Journal of Controlled Release, Volume 279, 10 June 2018, Pages 8-16
吉西他滨微泡用于胰腺癌的靶向超声化疗
2 Pro-apoptotic liposomes-nanobubble conjugate synergistic with paclitaxel: a platform for ultrasound responsive image-guided drug delivery. Rajeet Chandan & Rinti Banerjee. Nature: Scientific Reports, Published: 08 February 2018
促凋亡脂质体-纳米泡结合物与紫杉醇协同作用:超声响应图像引导药物传递平台
3 Antimicrobial sonodynamic and photodynamic therapies against Candida albicans. Fernanda Alves, Ana Cláudia Pavarina ORCID Icon, Ewerton Garcia de Oliveira Mima, Anthony P. McHale & John Francis Callan. The Journal of Bioadhesion and Biofilm Research, 06 Feb 2018, Published online: 19 Apr 2018, Pages 357-367
抗白念珠菌的声动力学和光动力疗法
4 Human Concentrative Nucleoside Transporter 3 Transfection with Ultrasound and Microbubbles in Nucleoside Transport Deficient HEK293 Cells Greatly Increases Gemcitabine Uptake. Robert J. Paproski, Sylvia Y. M. Yao, Nicole Favis, David Evans, James D. Young, Carol E. Cass, Roger J. Zemp
人浓缩核苷转运体3经超声和微泡转染核苷转运缺陷hek293细胞可显著增加吉西他滨的摄取
PLoS ONE Published: February 18, 2013 https://doi.org/10.1371/journal.pone.0056423
《公共科学图书馆·综合》
5 A versatile, stimulus-responsive nanoparticle-based platform for use in both sonodynamic and photodynamic cancer therapy. Nomikou N, Curtis K, McEwan C, O'Hagan BM, Callan B, Callan JF, McHale AP.. Acta Biomater. 2017 Feb;49:414-421. doi: 10.1016/j.actbio.2016.11.031. Epub 2016 Nov 14.
一个多用途,刺激反应纳米颗粒为基础的平台,用于声动力学和光动力学癌症治疗
6 Magnetically responsive microbubbles as delivery vehicles for targeted sonodynamic and antimetabolite therapy of pancreatic cancer. Yingjie Shenga, Estelle Beguinb, Heather Nesbitt, Sukanta Kamila, Joshua Owen, Lester C. Barnsley, Bridgeen Callan, Christopher O'Kane, Nikolitsa Nomikou, Rifat Hamoudi, Mark A.Taylor, Mark Love, Paul Kelly, Declan O'Rourke, Eleanor Stride, Anthony P. McHale, John F.Callan. Journal of Controlled Release, Volume 262, 28 September 2017, Pages 192-200
磁响应微泡作为靶向超声动力学和抗代谢治疗胰腺癌的载体
7 Ultrasound-responsive gene-activated matrices for osteogenic gene therapy using matrix-assisted sonoporation. Nomikou N, Feichtinger GA, Saha S, Nuernberger S, Heimel P, Redl H, McHale AP.. J Tissue Eng Regen Med. 2017 Jan 13. doi: 10.1002/term.2406. [Epub ahead of print]
超声响应基因激活基质用于基质辅助超声汽化成骨基因治疗
8 Development of a novel microbubble-liposome complex conjugated with peptide ligands targeting IL4R on brain tumor cells. Park SH, Yoon YI, Moon H, Lee GH, Lee BH, Yoon TJ, Lee HJ. Oncol Rep. 2016 Jul;36(1):131-6. doi: 10.3892/or.2016.4836. Epub 2016 May 24.
以IL4R为靶向肽配体的新型微泡脂质体复合物的研制
9 Comparing the efficacy of photodynamic and sonodynamic therapy in non-melanoma and melanoma skin cancer. McEwan C, Nesbitt H, Nicholas D, Kavanagh ON, McKenna K, Loan P, Jack IG, McHale AP, Callan JF. Bioorg Med Chem. 2016 Jul 1;24(13):3023-8. doi: 10.1016/j.bmc.2016.05.015. Epub 2016 May 12.
比较光动力疗法和超声疗法治疗非黑色素瘤和黑色素瘤皮肤癌的疗效
10 Combined sonodynamic and antimetabolite therapy for the improved treatment of pancreatic cancer using oxygen loaded microbubbles as a delivery vehicle. McEwan C, Kamila S, Owen J, Nesbitt H, Callan B, Borden M, Nomikou N, Hamoudi RA, Taylor MA, Stride E, McHale AP, Callan JF.
以含氧微泡为载体的超声动力学和抗代谢治疗联合应用于胰腺癌的改良治疗
11 Complex interfaces in “phase-change” contrast agents. Capece S, Domenici F, Brasili F, Oddo L, Cerroni B, Bedini A, Bordi F, Chiessi E, Paradossi G.Phys Chem Chem Phys. 2016 Mar 28;18(12):8378-88. doi: 10.1039/c5cp07538f.
相变造影剂中的11个复杂界面
12 Ultrasound-mediated gene transfer (sonoporation) in fibrin-based matrices: potential for use in tissue regeneration. Nomikou N, Feichtinger GA, Redl H, McHale AP..J Tissue Eng Regen Med. 2016 Jan;10(1):29-39. doi: 10.1002/term.1730. Epub 2013 Apr 17
纤维蛋白基质中超声介导的基因转移:用于组织再生的潜力
13 Utilizing Ultrasound to Transiently Increase Blood-Brain Barrier Permeability, Modulate of the Tight Junction Proteins, and Alter Cytoletal Structure. Bae MJ, Lee YM, Kim YH, Han HS, Lee H.
利用超声波暂时增加血脑屏障通透性,调节紧密连接蛋白,改变细胞骨架结构
14 Sonoporation efficacy on SiHa cells in vitro at raised bath temperatures—experimental validation of a prototype sonoporation device. Kivinen J, Togtema M, Mulzer G, Choi J, Zehbe I, Curiel L, Pichardo S.J Ther Ultrasound. 2015 Nov 6;3:19. doi: 10.1186/s40349-015-0040-9. eCollection 2015.
在提高浴温条件下对SiHa细胞的体外声穿孔效果-原型声穿孔装置的实验验证
15 Optimization of ultrasound parameters for microbubble-nanoliposome complex-mediated delivery. Yoon YI, Yoon TJ, Lee HJ.Ultrasonography. 2015 Oct;34(4):297-303. doi: 10.14366/usg.15009. Epub 2015 Apr 22.
微泡纳米脂质体复合物的超声参数化
16 Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours. McEwan C, Owen J, Stride E, Fowley C, Nesbitt H, Cochrane D, Coussios CC, Borden M, Nomikou N, McHale AP, Callan JF.J Control Release. 2015 Apr 10;203:51-6. doi: 10.1016/j.jconrel.2015.02.004. Epub 2015 Feb 4.
氧气携带微气泡,用于增强声动力治疗或缺氧性肿瘤
17 Open-source, high-throughput ultrasound treatment chamber. Yddal T, Cochran S, Gilja OH, Postema M, Kotopoulis S. Biomed Tech (Berl). 2015 Feb;60(1):77-87. doi: 10.1515/bmt-2014-0046.
开源、高通量超声治疗室
18 Developing calibrated ultrasound equipment for sonoporation research. Yddal, Torstein. The University of Bergen
开发用于超声汽化研究的校准超声设备
19 Ultrasound-mediated gene delivery of naked plasmid DNA in letal muscles: A case for bolus injections. Sanches PG, Mühlmeister M, Seip R, Kaijzel E, Lwik C, Bhmer M, Tiemann K, Grüll H.
超声介导裸质粒dna基因导入骨骼肌1例
20 Comparing Efficiency of micro-RNA and mRNA Biomarker Liberation with Microbubble-Enhanced Ultrasound Exposure. Forbrich A, Paproski R, Hitt M, Zemp R. Ultrasound Med Biol. 2014 Sep;40(9):2207-16. doi: 10.1016/j.ultrasmedbio.2014.05.005. Epub 2014 Jul 9.
比较微泡增强超声暴露与微rna和mrna生物标记物释放的效率
21 RNA Biomarker Release with Ultrasound and Phase-Change Nanodroplets. Paproski RJ, Forbrich A, Hitt M, Zemp R.. Ultrasound Med Biol. 2014 Aug;40(8):1847-56. doi: 10.1016/j.ultrasmedbio.2014.01.011. Epub 2014 May 2.
超声和相变纳米液滴释放21个rna生物标志物
22 Sonoporation Increases Therapeutic Efficacy of Inducible and Constitutive BMP2/7 In Vivo Gene Delivery. Feichtinger GA, Hofmann AT, Slezak P, Schuetzenberger S, Kaipel M, Schwartz E, Neef A, Nomikou N, Nau T, van Griensven M, McHale AP, Redl. H.Hum Gene Ther Methods. 2014 Feb;25(1):57-71. doi: 10.1089/hgtb.2013.113. Epub 2013 Nov 27.
声穿孔提高了诱导性和结构性bmp2/7体内基因传递的治疗效果。
23 A Device for Performing Sonoporation on Adherent Cell Cultures, Jonathan Kivinen, Lakehead University, Knowledge Commons, Electronic Theses and Dissertations
在贴壁细胞培养上进行声穿孔的装置,
24 Coupling of drug containing liposomes to microbubbles improves ultrasound triggered drug delivery in mice. Cool SK, Geers B, Roels S, Stremersch S, Vanderperren K, Saunders JH, De Smedt SC, Demeester J, Sanders NN.. J Control Release. 2013 Dec 28;172(3):885-93. doi: 10.1016/j.jconrel.2013.09.014. Epub 2013 Sep 25.
含药物脂质体与微泡的耦合改善了超声触发的小鼠药物传递。
25 Human Concentrative Nucleoside Transporter 3 Transfection with Ultrasound and Microbubbles in Nucleoside Transport Deficient HEK293 Cells Greatly Increases Gemcitabine Uptake. Paproski RJ, Yao SY, Favis N, Evans D, Young JD, Cass CE, Zemp RJ.
浓缩核苷转运体3在缺乏核苷转运的hek293细胞中的超声和微泡转染可显著增加吉西他滨的摄取
26 PLoS One. 2013;8(2):e56423. doi: 10.1371/journal.pone.0056423. Epub 2013 Feb 18. Microbubble-Enhanced Ultrasound Liberation of mRNA Biomarkers In Vitro. Forbrich A, Paproski R, Hitt M, Zemp R.. Ultrasound Med Biol. 2013 Jun;39(6):1087-93. doi: 10.1016/j.ultrasmedbio.2012.12.015. Epub 2013 Apr 3.
微泡增强体外超声释放mrna生物标志物的研究
27 Ultrasound-based molecular imaging and specific gene delivery to mesenteric vasculature by endothelial adhesion molecule targeted microbubbles in a mouse model of Crohn's disease. Tlaxca JL, Rychak JJ, Ernst PB, Konkalmatt PR, Shevchenko TI, Pizarro TT, Rivera-Nieves J, Klibanov AL, Lawrence MB. J Control Release. 2013 Feb 10;165(3):216-25. doi: 10.1016/j.jconrel.2012.10.021. Epub 2012 Nov 8.
克罗恩病小鼠模型中血管内皮粘附分子靶向微泡的超声分子成像和te异性基因传递