产品名称科研型纳米纤维静电纺丝系统—数百篇文献案例
品牌土耳其inovenso
产品货号科研型纳米纤维静电纺丝系统—数百篇文献案例
产品价格现货询价
联系人李先生
联系电话18618101725
产品说明



NE300多喷嘴静电纺丝机

NE300-静电纺纱机-1-1100x550

简要描述;简介

NE300电纺丝机是一种紧凑,灵活的实验室规模的电纺丝系统。与NS 24非常相似,但发射器更少(8个喷嘴),也具有单喷嘴生产能力。该模型具有均质系统,可以均匀涂覆纳米纤维膜。NE 300带有一个电jue缘的机柜,该机柜带有对化学溶液呈惰性的高密度PE部件,可用于处理许多聚合物。可以将许多可选功能添加到系统中,例如用于核-壳,中空和双组分纳米纤维的同轴系统。

du特的属性

  • 通过9英寸触摸屏面板进行可靠,精度的过程调整
  • 自下而上的纺纱
  • 多达8个喷嘴用于高通量静电纺丝
  • 314mm * 220mm涂层面积
  • 电jue缘柜,具有对化学溶液呈惰性的高密度PE零件
  • 自动控制电压,流量和收集器运动(z轴,x轴和旋转)
  • 额外的安quan选项,例如安quan门和警告灯,避免高压

可选配件

不同直径的针

下列直径的电纺针:(23G,21G,19G,17G,15G)X10件。

双组分系统

特殊设计的同轴喷嘴(内径:0.8毫米,外径:1.6毫米)和一个额外的注射泵,可得到核-壳,中空和双组分纳米纤维。

气罩喷嘴

气体防护罩是解决溶剂饱和的N2气体堵塞针头顶部聚合物的一种方法。该选项可以提高许多聚合物溶液的生产率。

旋转轴收集器

直径为3-4-5和6毫米的旋转轴收集器,用于生产管状纳米纤维膜。

温控箱

将纺丝区加热到40°C。

除湿机连体箱

环境湿度调节在25%和室内条件之间。

真空吸盘收集器

将固体基材(金属,玻璃,薄板,薄片)真空固定在固定板收集器上。

延长保修

标准设备具有1年保修。此外,还可以提供延长保修期的机器保修。


二、NE200单喷嘴静电纺丝机


是大学和小型研发项目的基本电纺丝装置。 其目标是为初学者研究人员轻松而轻易地生产纳米纤维。 单喷嘴电纺丝装置,具有高速旋转轴和板收集区。 能够处理类型的可纺聚合物。



NE200-静电纺纱机-2-1100x550

简要说明

NE200是功能与预算友好型机型的终ji组合。想要在多功能系统中进行研究的科学家的里想选择。该机器配有一个扁平收集器和一个旋转鼓式收集器,以获取排列整齐的纳米纤维,但也可以选择容纳其他类型的收集器,例如具有不同尺寸的旋转棒式收集器,以获取称为管状纳米纤维膜的纳米纤维的管状结构。可以用作人造血管。

du特的属性

  • 通过9英寸触摸屏面板进行可靠,精度的过程调整
  • 高通量生产
  • 单喷嘴电喷涂和电喷涂
  • 可变的扁平集热器类型
  • 30-230mm喷嘴到收集器的自动距离调节
  • 湿度和温度控制机箱选件
  • 额外的安quan选项,例如安quan门和警告灯,避免高压
  • 根据安quan法规和CE认证生产

可选配件

不同直径的针

下列直径的电纺针:(23G,21G,19G,17G,15G)X10件。

双组分系统

特殊设计的同轴喷嘴(内径:0.8毫米,外径:1.6毫米)和一个额外的注射泵,可得到核-壳,中空和双组分纳米纤维。

气罩喷嘴

气体防护罩是解决溶剂饱和的N2气体堵塞针头顶部聚合物的一种方法。该选项可以提高许多聚合物溶液的生产率。

旋转轴收集器

直径为3-4-5和6毫米的旋转轴收集器,用于生产管状纳米纤维膜。

温控箱

将纺丝区加热到40°C。

除湿机连体箱

环境湿度调节在25%和室内条件之间。

真空吸盘收集器

将固体基材(金属,玻璃,薄板,薄片)真空固定在固定板收集器上。

延长保修


三、欧美热销inovenso NE100单喷嘴静电纺丝机


NE100-静电纺纱机-1-1100x550

NE100静电纺丝单元  是介于基本静电纺丝系统和静电纺丝系统之间的型号,工艺参数均可从其可编程的易于使用的触摸屏面板进行编辑。它还具有经过特殊设计的隔离式底盘和排气系统,可用于蒸发溶剂。由于门安quan系统和隔离的底盘,科学家可以安quan地进行实验。

简要说明

Ne100是一种易于使用的单喷嘴静电纺丝装置,专为小规模生产纳米纤维而设计。受保护的机舱避免了高压或溶剂蒸汽可能引起的任何危险。该模型包含在Inovenso Scale Up Program中,允许用户将其设备升级到更的模型。

du特的属性

  • 通过9英寸触摸屏面板进行可靠,精度的过程调整
  • 特殊单喷嘴实现高产量生产
  • 扁平收集器,用于纳米纤维沉积

可选配件

不同直径的针

下列直径的电纺针:(23G,21G,19G,17G,15G)X10件。

双组分系统

特殊设计的同轴喷嘴(内径:0.8毫米,外径:1.6毫米)和一个额外的注射泵,可得到核-壳,中空和双组分纳米纤维。

气罩喷嘴

气体防护罩是解决溶剂饱和的N2气体堵塞针头顶部聚合物的一种方法。该选项可以提高许多聚合物溶液的生产率。

旋转轴收集器

直径为3-4-5和6毫米的旋转轴收集器,用于生产管状纳米纤维膜。

温控箱

将纺丝区加热到40°C。

除湿机连体箱

环境湿度调节在25%和室内条件之间。

真空吸盘收集器

将固体基材(金属,玻璃,薄板,薄片)真空固定在固定板收集器上。

延长保修


四、Nanospinner 24多喷嘴静电纺丝机





NS 24是Inovenso通用,的实验室规模的系统,它也是我们的型号,在的大学和公司中安装了50多个装置。该静电纺丝单元可将纳米纤维收集在各种收集器上:平板收集器,转速为2000 rpm的旋转鼓式收集器,用于获得排列良好的纳米纤维。它还可以任选地容纳具有不同尺寸的旋转棒收集器,以获得被称为管状纳米纤维膜的纳米纤维的管状结构,其可以用作人造血管。该型号有12个喷嘴,但也可以与单个喷嘴一起用于小型实验室生产。

du特的属性

通过9英寸触摸屏面板进行可靠,精度的过程调整

高通量生产

多达12个静电纺丝喷嘴供料

376,8mm * 280mm纳米纤维涂层面积

高达2000 RPM的高速旋转鼓

定向或排列的纳米纤维的生产

可调水平运动以增加膜的均匀性

自动可调旋转距离

额外的安quan选项,例如安quan门和警告灯,避免高压

根据安quan法规生产并获得CE认证

不同直径的针

下列直径的电纺针:(23G,21G,19G,17G,15G)X10件。

 

双组分系统

特殊设计的同轴喷嘴(内径:0.8毫米,外径:1.6毫米)和一个额外的注射泵,可得到核-壳,中空和双组分纳米纤维。

气罩喷嘴

气体防护罩是解决溶剂饱和的N2气体堵塞针头顶部聚合物的一种方法。该选项可以提高许多聚合物溶液的生产率。

旋转轴收集器

直径为3-4-5和6毫米的旋转轴收集器,用于生产管状纳米纤维膜。

 

温控箱

将纺丝区加热到40°C。

除湿机连体箱

环境湿度调节在25%和室内条件之间。

真空吸盘收集器

将固体基材(金属,玻璃,薄板,薄片)真空固定在固定板收集器上。

延长保修

标准设备具有1年保修。此外,还可以提供延长保修期的机器保修





关于INOVENSO

超过12年的静电纺丝实践经验。可靠的纳米纤维生产设备

我们于2007年开始了我们的学术活动,于纳米纤维膜小组(NanoFMG)的纳米技术研究。在于提高静电纺丝过程中的纳米纤维质量之后,我们于2010年成立了我们出生的公司Inovenso。我们的名字是Innovative Engineering Solutions的缩写。我们旨在开发非常高效的静电纺丝机,并加速纳米纤维科学。我们迅速成为学术界和工业界的桥梁公司,并自豪地为使用聚合物纳米纤维的数百项科学项目做出了贡献,这些应用广泛应用于生物医学,组织工程,制药,能源,过滤,材料科学,纺织,农业,化妆品以及许多其他领域其他。

通过开发定制的静电纺丝设备,从任何实验室规模的台式入门套件到工业规模的静电纺丝设备,我们引入了新的创新方法来克服纳米纤维生产领域中的许多常见障碍,例如可伸缩性,灵活性,标准化和可重复性。只有与我们的客户紧密合作,了解他们的实际需求并分享他们的担忧和问题,才有可能。

我们对设备和服务的需求在范围内都很高,我们将业务移至美国马萨诸塞州波士顿。如今,Inovenso Inc.凭借其跨学科的部门和团队正在创建纳米技术生态系统,并已成为大牛,在拥有超过350多种设备,并获得MIT,斯坦福大学,康奈尔大学等大学和3M等公司的推荐,霍尼韦尔(中国)和许多其他公司。

我们提供三种主要类别的多种静电纺丝设备,如实验室规模,半工业和工业规模的纳米纤维生产静电纺丝设备。目前,我们正在制造基于针的,混合式,单喷嘴和多喷嘴静电纺丝设备及其配件。

总而言之,Inovenso Inc.创造了适合客户和合作伙伴需求的合适技术,并通过从台架研究到市场生产的wu限咨询支持,认可了他们的纳米技术项目。


应用及用户案例:


科研文献


  1. Optimization of Electrospinning Parameters for Poly (Vinyl Alcohol) and Glycine Electrospun Nanofibers
  2. Optimization of Electrospinning Parameters for Poly (Vinyl Alcohol) and Glycine Electrospun Nanofibers
  3. Optimization of functionalized electrospun fibers for the development of colorimetric oxygen indicator as an intelligent food packaging system
  4. Co-electrospun-electrosprayed PVA/folic acid nanofibers for transdermal drug delivery: Preparation, characterization, and in vitro cytocompatibility
    Fatma Nur Parin, Cigdem Inci Aydemir, Gokce Taner, Kenan Yildirim
    Bursa Technical University
  5. Engineering multifunctional bactericidal nanofibers for abdominal hernia repair
    Anderson Oliveira Lobo, Samson Afewerki
    Harvard Medical School
  6. An electrochemical immunosensor modified with titanium IV oxide/polyacrylonitrile nanofibers for the determination of carcino embriyonic antigen
  7. Polycaprolactone/silk fibroin electrospun nanofibers‐based lateral flow test strip for quick and facile determination of bisphenol A in breast milk
    Begüm Gürel‐G?kmen, Hava Dudu Taslak, Ozan ?zcan, Necla ?par, Tu?ba Tunali‐Akbay
    Marmara University
  8. Electrospinning of ampicillin trihydrate loaded electrospun PLA nanofibers I: effect of polymer concentration and PCL addition on its morphology, drug delivery and mechanical properties
    Tugba Eren Boncu, Nurten Ozdemir
    Ankara University
  9. Preparation of Silver Cyclohexane di Carboxylate: Β-cyclodextrin Inclusion Complexes and Their Use in the Production of Poly(vinyl alcohol) Nanowebs
    R?za ATAV, Aylin YILDIZ, Derman VATANSEVER BAYRAMOL, Ahmet ?zgür A?IRGAN , U?ur ERG?NAY
    Tekirda? Nam?k Kemal University
  10. Holistic Investigation of the Electrospinning Parameters for High Percentage of β-phase in PVDF Nanofibers
    Rahul Kumar Singh, Sun Woh Lye, Jianmin Miao
    Nanyang Technological University, Singapore
  11. Design and fabrication of nano-engineered electrospun filter media with cellulose nanocrystal for toluene adsorption from indoor air
    Esra Buyukada-Kesici, Elifnur Gezmis-Yavuz, Dila Aydina, Elif Cansoy, Kadir Alp, Derya Y.Koseoglu-Imer
  12. Biocomposite scaffolds for 3D cell culture: Propolis enriched polyvinyl alcohol nanofibers favoring cell adhesion
    Rumeysa Bilginer, Dilce Ozkendir‐Inanc, Umit Hakan Yildiz, Ahu Arslan‐Yildiz

    https://onlinelibrary.wiley.com/doi/abs/10.1002/app.50287

  13. Electrospun core-sheath PAN@ PPY nanofibers decorated with ZnO: photo-induced water decontamination enhanced by formation of a heterojunction
    G Capilli, P Calza, C Minero, M Cerruti. McGill University

    https://www.sciencedirect.com/science/article/abs/pii/S2352492820326829

  14. Dual electrospinning of a nanocomposites biofilm: Potential use as an antimicrobial barrier
    Judith Vergara-Figueroa, Serguei Alejandro-Martin, Fabiola Cerda-Leal, William Gacitúa. Universidad del Bío-Bío

    https://www.sciencedirect.com/science/article/abs/pii/S2352492820326829

  15. Helicoidally Arranged Polyacrylonitrile Fiber-Reinforced Strong and Impact-Resistant Thin Polyvinyl Alcohol Film Enabled by Electrospinning-Based Additive Manufacturing
    Rahul Sahay , Komal Agarwal, Anbazhagan Subramani , Nagarajan Raghavan

    https://scholar.google.com.tr/scholar_url?url=https://www.mdpi.com/2073-4360/12/10/2376/pdf&hl=tr&sa=X&d=15229915842923991540&ei=HfiNX_izGIy0ygT3m6bYBw&scisig=AAGBfm2QTPnRcmJgdY7WJqhwO9OTLvnGXA&nossl=1&oi=scholaralrt&hist=NSAhIeoAAAAJ:16172062561605054270:AAGBfm0NgWrUaFisOH1m3cVrJiuKCbAA7g&html=

  16. Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue engineering
    Parinaz Saadat, Esbah Tabaei, Mahtab Asadian, Rouba Ghobeira

    https://www.sciencedirect.com/science/article/abs/pii/S0144861720313849

  17. Functional polymer nanofibers: from spinning fabrication techniques to recent biomedical applications
    Danilo Martins dos Santos, Daniel S. Corrêa, Eliton S Medeiros, Juliano Oliveira, and LUIZ Henrique C. MATTOSO

    https://pubs.acs.org/doi/abs/10.1021/acsami.0c12410

  18. Composite Membranes with Nanofibrous Cross-hatched Supports for Reverse Osmosis Desalination
    Seungju Kim , Daniel E. Heath, and Sandra E. Kentish

    https://pubs.acs.org/doi/abs/10.1021/acsami.0c12588

  19. A Bimodal Protein Fabric Enabled via In-Situ Diffusion for High-Performance Air Filtration
  20. THE DEVELOPMENT AND OPTIMIZATION OF FLUORESCENT SENSORS FOR CONTINUOUS MONITORING OF PHYSIOLOGICAL MOLECULES IN VIVO
  21. Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering
    Koushanee Madub Nowsheen Goonoo Fanny Gimié Imade Ait Arsa HolgerSch?nherr Archana Bhaw-Luximon

    https://www.sciencedirect.com/science/article/pii/S014486172031198X

  22. Preparation, characterization and antimicrobial activity evaluation of electrospun PCL nanofiber composites of resveratrol nanocrystals
  23. Electrospinning of PLA and PLA/POSS nanofibers: Use of Taguchi optimization for process parameters
    Yelda Meyva‐Zeybek, Cevdet Kaynak

    https://onlinelibrary.wiley.com/doi/abs/10.1002/app.49685

  24. Centella Asiatica Extract Containing Bilayered Electrospun Wound Dressing
    Ismail Alper Isoglu & Nuray Koc

    https://link.springer.com/article/10.1007/s12221-020-9956-y

  25. Heterogeneous PVC cation-exchange membrane synthesis by electrospinning for reverse electrodialysis
    JS Jaime-Ferrer, M Mosqueda-Quintero

    https://www.degruyter.com/view/journals/ijcre/ahead-of-print/article-10.1515-ijcre-2020-0020/article-10.1515-ijcre-2020-0020.xml

  26. Electrochemical evaluation of Titanium (IV) Oxide/Polyacrylonitrile electrospun discharged battery coals as supercapacitor electrodes
    Sema Aslan, Derya Bal Altunta?, ?a?da? Ko?ak, Hülya Kara Suba?at

    https://onlinelibrary.wiley.com/doi/abs/10.1002/elan.202060239

  27. Progress in the design and development of “fast-dissolving” electrospun nanofibers based drug delivery systems - A systematic review
    Brabu Balusamy, Asli Celebioglu, Anitha Senthamizhan, Tamer Uyar

    https://www.sciencedirect.com/science/article/abs/pii/S0168365920304223

  28. Stabilizing 3 nm-Pt nanoparticles in close proximity on rutile nanorods-decorated-TiO2 nanofibers by improving support uniformity for catalytic reactions
    Wanlin Fu, Zhihui Li, Yunpeng Wang, Yueming Sun, Yunqian Dai. Southeast University, Nanjing.

    https://www.sciencedirect.com/science/article/abs/pii/S1385894720321410#!

  29. 29
    Photoluminescence Properties of a New Sm(III) Complex/PMMA Electrospun Composite Fibers
    Hulya Kara, Gorkem Oylumluoglu & Mustafa Burak Coban. Balikesir University.

    https://link.springer.com/article/10.1007/s10876-019-01677-7

  30. Optimization of the electrospinning process variables for gelatin/silver nanoparticles/bioactive glass nanocomposites for bone tissue engineering
    Aysen Akturk, Melek Erol Taygun, Gultekin Goller Istanbul Technical University Scientific Research Projects Foundation, Grant/Award Number: 38881

    https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.25545

  31. Preparation And Characterization Of Polyvinyl Borate/Polyvinyl Alcohol (PVB/PVA) Blend Nanofibers

    Koysuren, O., Karaman, M. and Dinc, H. (2012), Preparation and characterization of polyvinyl borate/polyvinyl alcohol (PVB/PVA) blend nanofibers. J. Appl. Polym. Sci., 124: 2736–2741. doi:10.1002/app.35035

    (http://onlinelibrary.wiley.com/doi/10.1002/app.35035/full)

  32. The Effects of Power and Feeding Rate on Production of Polyurethane Nanofiber with Electrospinning Process

    O?teyaka, M. O., O?zel, E., Y?ld?r?m, M. M., Aslan, M. H., Oral, A. Y., O?zer, M., & C?aglar, S. H. (2011). The Effects of Power and Feeding Rate on Production of Polyurethane Nanofiber with Electrospinning Process. doi:10.1063/1.3663116

    (https://aip.scitation.org/doi/abs/10.1063/1.3663116)

  33. Initiated Chemical Vapor Deposition Of Ph Responsive Poly(2-Diisopropylamino)Ethyl Methacrylate Thin Films

    Mustafa Karaman, Nihat ?abuk, Initiated chemical vapor deposition of pH responsive poly(2-diisopropylamino)ethyl methacrylate thin films, Thin Solid Films, Volume 520, Issue 21, 31 August 2012, Pages 6484-6488, ISSN 0040-6090, http://dx.doi.org/10.1016/j.tsf.2012.06.083

    (http://www.sciencedirect.com/science/article/pii/S0040609012008140)

  34. S?cak Filament Destekli Kimyasal Buhar Biriktirme Y?ntemi ?le Süper Su ?tici Nano Kaplama Sentezi

    ?abuk, N. (2012). S?cak filament destekli kimyasal buhar biriktirme y?ntemi ile süper su itici nano kaplama sentezi (Doctoral dissertation, Sel?uk ?niversitesi Fen Bilimleri Enstitüsü).

    (http://acikerisim.selcuk.edu.tr:8080/xmlui/handle/123456789/1151)

  35. Preparation And Characterization Of Polyvinyl Alcohol/Carbon Nanotube (PVA/CNT) Conductive Nanofibers

    K?ysüren, O. (2012). Preparation and characterization of polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers. Journal of Polymer Engineering, 32(6-7), pp. 407-413. Retrieved 29 Apr. 2016, from doi:10.1515/polyeng-2012-0068

    (http://www.degruyter.com/view/j/polyeng.2012.32.issue-6-7/polyeng-2012-0068/polyeng-2012-0068.xml)

  36. The development and design of fluorescent sensors for continuous in vivo glucose monitoring

    Balaconis, Mary K., “The development and design of fluorescent sensors for continuous in vivo glucose monitoring” (2014). Mechanical Engineering Dissertations. Paper 54.

    (http://hdl.handle.net/2047/d20004844)

  37. Effects of different sterilization methods on polyester surfaces

    Duzyer, Sebnem & Koral Ko?, Serpil & Hockenberger, Asli & Evke, Elif & Kahveci, Zeynep & Uguz, Agah. (2013). Effects of different sterilization methods on polyester surfaces. Tekstil ve Konfeksiyon. 23. 319-324.

    (https://www.researchgate.net/publication/272672175_Effects_of_different_sterilization_methods_on_polyester_surfaces)

  38. 38
    Polymer Nanofibers: Building Blocks for Nanotechnology

    Pisignano, D. (2013). Polymer nanofibers: building blocks for nanotechnology. Cambridge: Royal Society of Chemistry.

    (https://books.google.com.tr/books?id=BnQoDwAAQBAJ&hl=tr)

  39. 39
    Affecting Parameters On Electrospinning Process And Characterization Of Electrospun Gelatin Nanofibers

    Nagihan Okutan, P?nar Terzi, Filiz Altay, Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers, Food Hydrocolloids, Volume 39, August 2014, Pages 19-26, ISSN 0268-005X, http://dx.doi.org/10.1016/j.foodhyd.2013.12.022.

    (http://www.sciencedirect.com/science/article/pii/S0268005X13004062)

  40. 40
    Design Of A Novel Nozzle Prototype For Increased Productivity And Improved Coating Quality During Electrospinning

    UCAR, Nuray; UCAR, Mehmet; KIZILDA?, Nuray. DESIGN OF A NOVEL NOZZLE PROTOTYPE FOR INCREASED PRODUCTIVITY AND IMPROVED COATING QUALITY DURING ELECTROSPINNING. Journal of Textile & Apparel/Tekstil ve Konfeksiyon, 2013, 23.3.

    (https://www.researchgate.net/publication/293543273_DESIGN_OF_A_NOVEL_NOZZLE_PROTOTYPE_FOR_INCREASE_PRODUCTIVITY_AND_IMPROVED_COATING_QUALITY_DURING_ELECTROSPINNING)

  41. 41
    Electrospun Polyvinyl Borate/Poly(Methyl Methacrylate) (PVB/PMMA) Blend Nanofibers

    Koysuren, O., Karaman, M., Yildiz, H. B., Koysuren, H. N., & Din?, H. (2014). Electrospun polyvinyl borate/poly (methyl methacrylate)(PVB/PMMA) blend nanofibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(7), 337-341.

    (http://www.tandfonline.com/doi/abs/10.1080/00914037.2013.845188)

  42. 42
    Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review

    Persano, L., Camposeo, A., Tekmen, C., & Pisignano, D. (2013). Industrial upscaling of electrospinning and applications of polymer nanofibers: a review.Macromolecular Materials and Engineering, 298(5), 504-520.

    (http://onlinelibrary.wiley.com/doi/10.1002/mame.201200290/full)

  43. Template Assisted Synthesis Of Photocatalytic Titanium Dioxide Nanotubes By Hot Filament Chemical Vapor Deposition Method

    Mustafa Karaman, Fatma Sar?ipek, ?zcan K?ysüren, H. Bekir Y?ld?z, Template assisted synthesis of photocatalytic titanium dioxide nanotubes by hot filament chemical vapor deposition method, Applied Surface Science, Volume 283, 15 October 2013, Pages 993-998, ISSN 0169-4332, http://dx.doi.org/10.1016/j.apsusc.2013.07.058.

    (http://www.sciencedirect.com/science/article/pii/S016943321301369X)

  44. 44
    UV Illumination Effects On Electrical Characteristics Of Metal–Polymer–Semiconductor Diodes Fabricated With New Poly(Propylene Glycol)-B-Polystyrene Block Copolymer

    G?k?en, M. Y?ld?r?m, A. Demir, A. All?, S. All?, B. Hazer, UV illumination effects on electrical characteristics of metal–polymer–semiconductor diodes fabricated with new poly(propylene glycol)-b-polystyrene block copolymer, Composites Part B: Engineering, Volume 57, February 2014, Pages 8-12, ISSN 1359-8368, http://dx.doi.org/10.1016/j.compositesb.2013.09.038.

    (http://www.sciencedirect.com/science/article/pii/S1359836813005519)

  45. Experimental Study on Relationship of Applied Power And Feeding Rate on Production of Polyurethane Nanofibre

    Oteyaka, M., Ozel, E., & Y?ld?r?m, M. (2014). Experimental Study On Relationship Of Applied Power And Feeding Rate On Production Of Polyurethane Nanofibre. Gaz? Un?vers?ty Journal Of Sc?ence, 26(4), 611-618.

    (http://gujs.gazi.edu.tr/article/view/1060000855)

  46. 46
    Electrospun Fibers For Vaginal Anti-HIV Drug Delivery

    Anna K. Blakney, Cameron Ball, Emily A. Krogstad, Kim A. Woodrow, Electrospun fibers for vaginal anti-HIV drug delivery, Antiviral Research, Volume 100, Supplement, December 2013, Pages S9-S16, ISSN 0166-3542, http://dx.doi.org/10.1016/j.antiviral.2013.09.022.

    (http://www.sciencedirect.com/science/article/pii/S0166354213002829)

  47. 47
    Polivinil Borat Sentezin ; Elektrospin Y?ntemiyle Nanofiber Haz?rlanmas? Ve Karakterizasyonu

    Din?, H. (2013). Polivinil borat sentezin; elektrospin y?ntemiyle nanofiber haz?rlanmas? ve karakterizasyonu (Doctoral dissertation, Sel?uk ?niversitesi Fen Bilimleri Enstitüsü).

    (http://acikerisim.selcuk.edu.tr:8080/xmlui/handle/123456789/1158)

  48. 48
    Commercial Viability Analysis of Lignin Based Carbon Fibre

    Chen, M.C. (2014). Commercial Viability Analysis of Lignin Based Carbon Fibre.

    (https://core.ac.uk/download/pdf/56378549.pdf)

  49. 49
    Electrospun Antibacterial Nanofibers: Production, Activity, And In Vivo Applications

    Gao, Y., Bach Truong, Y., Zhu, Y. and Louis Kyratzis, I. (2014), Electrospun antibacterial nanofibers: Production, activity, and in vivo applications. J. Appl. Polym. Sci., 131, 40797, doi: 10.1002/app.40797

    (http://onlinelibrary.wiley.com/doi/10.1002/app.40797/full)

  50. 50
    Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions

    Balaconis, M. K., Luo, Y., & Clark, H. A. (2015). Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions. The Analyst, 140(3), 716–723. doi:10.1039/c4an01775g

    (https://pubs.rsc.org/en/content/articlelanding/2015/AN/C4AN01775G#!divAbstract)

  51. 51
    Utilization Of Electrospun Nanofibers Containing Gelatin Or Gelatin-cellulose Acetate For Preventing Syneresis In Tomato Ketchup

    Hendessi, S. (2014). Jelat?n Veya Jelat?n-selüloz Asetat ??eren Nanoliflerin Domates Ket?aplar?nda Sineresisi ?nleyici Olarak Kullan?lmas? (Doctoral dissertation, Fen Bilimleri Enstitüsü).

    (http://hdl.handle.net/11527/2193)

  52. 52
    Thermal Conductivity Of Electrospun Polyethylene Nanofibers

    Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., … & Li, D. (2015). Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale, 7(40), 16899-16908.

    (http://pubs.rsc.org/en/content/articlelanding/2015/nr/c5nr04995d#!divAbstract)

  53. 53
    Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs

    Enis, I. Y., Vojtech, J., & Sadikoglu, T. G. (2015). Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs. World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 9(5), 429-432.

    (http://www.waset.org/publications/10001167)

  54. 54
    Preparation And In Vitro Characterization Of Electrospun 45S5 Bioactive Glass Nanofibers

    Aylin M. Deliormanl?, Preparation and in vitro characterization of electrospun 45S5 bioactive glass nanofibers, Ceramics International, Volume 41, Issue 1, Part A, January 2015, Pages 417-425, ISSN 0272-8842, http://dx.doi.org/10.1016/j.ceramint.2014.08.086.

    (http://www.sciencedirect.com/science/article/pii/S0272884214013236)

  55. 55
    Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO2 Nanofibers

    Favors, Z., Bay, H. H., Mutlu, Z., Ahmed, K., Ionescu, R., Ye, R., … & Ozkan, C. S. (2015). Towards scalable binderless electrodes: carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO2 nanofibers. Scientific reports, 5.

    (http://www.nature.com/articles/srep08246?message-global=remove&WT.ec_id=SREP-639-20150210)

  56. 56
    Cellulose Acetate–Poly(N-isopropylacrylamide)-Based Functional Surfaces with Temperature-Triggered Switchable Wettability

    Ganesh, V. A., Ranganath, A. S., Sridhar, R., Raut, H. K., Jayaraman, S., Sahay, R., … & Baji, A. (2015). Cellulose Acetate–Poly (N‐isopropylacrylamide)‐Based Functional Surfaces with Temperature‐Triggered Switchable Wettability. Macromolecular rapid communications, 36(14), 1368-1373.

    (http://onlinelibrary.wiley.com/doi/10.1002/marc.201500037/abstract?userIsAuthenticated=false&deniedAccessCustomisedMessage=)

  57. 57
    Electrospinning Of Nanofibrous Polycaprolactone (PCL) And Collagen-Blended Polycaprolactone For Wound Dressing And Tissue Engineering

    Zeybek, B., Duman, M., & ?rkmez, A. S. (2014). Electrospinning of nanofibrous polycaprolactone (PCL) and collagen-blended polycaprolactone for wound dressing and tissue engineering. Usak University Journal of Material Sciences, 3(1), 121.

    (http://search.proquest.com/openview/ecfe94e89a75c0739c7fd72ba51bf90f/1?pq-origsite=gscholar)

  58. 58
    Phosphine-Functionalized Electrospun Poly(Vinyl Alcohol)/Silica Nanofibers As Highly Effective Adsorbent For Removal Of Aqueous Manganese And Nickel Ions

    Md. Shahidul Islam, Md. Saifur Rahaman, Jeong Hyun Yeum, Phosphine-functionalized electrospun poly(vinyl alcohol)/silica nanofibers as highly effective adsorbent for removal of aqueous manganese and nickel ions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 484, 5 November 2015, Pages 9-18, ISSN 0927-7757, http://dx.doi.org/10.1016/j.colsurfa.2015.07.023.

    (http://www.sciencedirect.com/science/article/pii/S092777571530100X)

  59. 59
    Free-Standing Ni–Nio Nanofiber Cloth Anode For High Capacity And High Rate Li-Ion Batteries

    Jeffrey Bell, Rachel Ye, Kazi Ahmed, Chueh Liu, Mihrimah Ozkan, Cengiz S. Ozkan, Free-standing Ni–NiO nanofiber cloth anode for high capacity and high rate Li-ion batteries, Nano Energy, Volume 18, November 2015, Pages 47-56, ISSN 2211-2855, http://dx.doi.org/10.1016/j.nanoen.2015.09.013.

    (http://www.sciencedirect.com/science/article/pii/S2211285515003742)

  60. 60
    Coaxial Electrospinning Of WO3 Nanotubes Functionalized With Bio-?nspired Pd Catalysts And Their Superior Hydrogen Sensing Performance

    Choi, S. J., Chattopadhyay, S., Kim, J. J., Kim, S. J., Tuller, H. L., Rutledge, G. C., & Kim, I. D. (2016). Coaxial electrospinning of WO 3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale.

    (http://pubs.rsc.org/is/content/articlelanding/2016/nr/c5nr06611e/unauth#!divAbstract)

  61. 61
    Electrospun Cerium And Gallium-Containing Silicate Based 13-93 Bioactive Glass Fibers For Biomedical Applications

    Aylin M. Deliormanl?, Electrospun cerium and gallium-containing silicate based 13-93 bioactive glass fibers for biomedical applications, Ceramics International, Volume 42, Issue 1, Part A, January 2016, Pages 897-906, ISSN 0272-8842, http://dx.doi.org/10.1016/j.ceramint.2015.09.016.

    (http://www.sciencedirect.com/science/article/pii/S0272884215017241)

  62. 62
    Electrospun Polyvinyl Alcohol/ Pluronic F127 Blended Nanofibers Containing Titanium Dioxide For Antibacterial Wound Dressing

    El-Aassar, M. R., El-Deeb, N. M., Hassan, H. S., & Mo, X. (2015). Electrospun Polyvinyl Alcohol/Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing. Applied biochemistry and biotechnology, 1-15.

    (http://link.springer.com/article/10.1007/s12010-015-1962-y)

  63. 63
    Preparation, In Vitro Mineralization And Osteoblast Cell Response Of Electrospun 13–93 Bioactive Glass Nanofibers

    Aylin M. Deliormanl?, Preparation, in vitro mineralization and osteoblast cell response of electrospun 13–93 bioactive glass nanofibers, Materials Science and Engineering: C, Volume 53, 1 August 2015, Pages 262-271, ISSN 0928-4931, http://dx.doi.org/10.1016/j.msec.2015.04.037.

    (http://www.sciencedirect.com/science/article/pii/S0928493115300394)

  64. 64
    Membrane manufacturing via simultaneous electrospinning of PAN and PSU solutions

    Guclu, S., Pasaoglu, M. E., & Koyuncu, I. (2015). Membrane manufacturing via simultaneous electrospinning of PAN and PSU solutions. Desalination and Water Treatment, 1-9.

    (http://www.tandfonline.com/doi/abs/10.1080/19443994.2015.1024747)

  65. 65
    Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering

    Ogunlaja, A. S., & Tshentu, Z. R. (2015). Molecularly Imprinted Polymer Nanofibers for Adsorptive Desulfurization. Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering, 281.

    (https://books.google.com.tr/books?hl=tr&lr=&id=oGa2CgAAQBAJ&oi=fnd&pg=PA281&dq=inovenso&ots=D8gIXZpcRB&sig=V_3qD1gM2EfbBpWrKSkxMgXhGGA&redir_esc=y#v=onepage&q=inovenso&f=false)

  66. 66
    Investigation of wettability and moisture sorption property of electrospun poly(N-isopropylacrylamide) nanofibers

    Ranganath, A. S., Ganesh, V. A., Sopiha, K., Sahay, R., & Baji, A. Investigation of wettability and moisture sorption property of electrospun poly (N-isopropylacrylamide) nanofibers. MRS Advances, 1-6.

    (http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=10198457&fileId=S205985211600164X)

  67. 67
    Alternative Solvent Systems For Polycaprolactone Nanowebs Via Electrospinning

    Ipek Y Enis, Jakub Vojtech, and Telem G Sadikoglu, Alternative solvent systems for polycaprolactone nanowebs via electrospinning, Journal of Industrial Textiles 1528083716634032, first published on February 17, 2016 doi:10.1177/1528083716634032

    (http://jit.sagepub.com/content/early/2016/02/17/1528083716634032.abstract)

  68. 68
    Controlled Release Of A Hydrophilic Drug From Coaxially Electrospun Polycaprolactone Nanofibers

    Zahida Sultanova, Gizem Kaleli, G?zde Kabay, Mehmet Mutlu, Controlled release of a hydrophilic drug from coaxially electrospun polycaprolactone nanofibers, International Journal of Pharmaceutics, Volume 505, Issues 1–2, 30 May 2016, Pages 133-138, ISSN 0378-5173, http://dx.doi.org/10.1016/j.ijpharm.2016.03.032.

    (http://www.sciencedirect.com/science/article/pii/S0378517316302320)

  69. 69
    Recent Developments In Micro- And Nanofabrication Techniques For The Preparation Of Amorphous Pharmaceutical Dosage Forms

    Sheng Qi, Duncan Craig, Recent developments in micro- and nanofabrication techniques for the preparation of amorphous pharmaceutical dosage forms, Advanced Drug Delivery Reviews, Available online 9 January 2016, ISSN 0169-409X, http://dx.doi.org/10.1016/j.addr.2016.01.003.

    (http://www.sciencedirect.com/science/article/pii/S0169409X16300059)

  70. 70
    Fabrication Of Electrospun Nanofiber Catalysts And Ammonia Borane Hydrogen Release Efficiency

    Bilge Co?kuner Filiz, Aysel Kantürk Figen, Fabrication of electrospun nanofiber catalysts and ammonia borane hydrogen release efficiency, International Journal of Hydrogen Energy, Available online 18 April 2016, ISSN 0360-3199, http://dx.doi.org/10.1016/j.ijhydene.2016.03.182.

    (http://www.sciencedirect.com/science/article/pii/S0360319915318632)

  71. 71
    Enhancement Of Mechanical And Physical Properties Of Electrospun PAN Nanofiber Membranes Using PVDF Particles

    Elkhaldi, R. M., Guclu, S., & Koyuncu, I. (2016). Enhancement of mechanical and physical properties of electrospun PAN nanofiber membranes using PVDF particles. Desalination and Water Treatment, 1-11.

    (http://www.tandfonline.com/doi/abs/10.1080/19443994.2016.1159253)

  72. 72
    Proposal Of A Framework For Scale-Up Life Cycle Inventory: A Case Of Nanofibers For Lithium Iron Phosphate Cathode Applications

    Simon, B., Bachtin, K., Kili?, A., Amor, B., & Weil, M. (2016). Proposal of a framework for scale‐up life cycle inventory: A case of nanofibers for lithium iron phosphate cathode applications. Integrated Environmental Assessment and Management. doi: [10.1002/ieam.1788].

    (http://onlinelibrary.wiley.com/doi/10.1002/ieam.1788/abstract)

  73. 73
    Electrospun Differential Wetting Membranes for Efficient Oil–Water Separation

    Ganesh, V. A., Ranganath, A. S., Baji, A., Wong, H. C., Raut, H. K., Sahay, R., & Ramakrishna, S. (2016). Electrospun Differential Wetting Membranes for Efficient Oil–Water Separation. Macromolecular Materials and Engineering.

    (http://onlinelibrary.wiley.com/doi/10.1002/mame.201600074/abstract)

  74. 74
    On the adhesion of hierarchical electrospun fibrous structures and prediction of their pull-off strength

    Sahay, R., Parveen, H., Ranganath, A. S., Ganesh, V. A., & Baji, A. (2016). On the adhesion of hierarchical electrospun fibrous structures and prediction of their pull-off strength. RSC Advances, 6(53), 47883–47889. doi:10.1039/c6ra05757h

    (https://pubs.rsc.org/en/content/articlelanding/2016/RA/c6ra05757h#!divAbstract)

  75. 75
    Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design

    G?nen, S. ?., Erol Taygun, M., Aktürk, A., & Kü?ükbayrak, S. (2016). Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design. Materials Science and Engineering: C, 67, 684–693. doi:10.1016/j.msec.2016.05.065

    (https://www.sciencedirect.com/science/article/pii/S0928493116304982)

  76. 76
    Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing

    Mabrouk, M., Choonara, Y. E., Marimuthu, T., Kumar, P., du Toit, L. C., van Vuuren, S., & Pillay, V. (2016). Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing. International Journal of Pharmaceutics, 507(1-2), 41–49. doi:10.1016/j.ijpharm.2016.05.011

    (https://www.sciencedirect.com/science/article/pii/S0378517316303751?via%3Dihub)

  77. 77
    Fabrication of protein scaffold by electrospin coating for artificial tissue

    Ozcan, F., Ertul, S., & Maltas, E. (2016). Fabrication of protein scaffold by electrospin coating for artificial tissue. Materials Letters, 182, 359–362. doi:10.1016/j.matlet.2016.07.010

    (https://www.sciencedirect.com/science/article/abs/pii/S0167577X16311065)

  78. 78
    Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing

    Di, W., Czarny, R. S., Fletcher, N. A., Krebs, M. D., & Clark, H. A. (2016). Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing. Pharmaceutical Research, 33(10), 2433–2444. doi:10.1007/s11095-016-1987-0

    (https://link.springer.com/article/10.1007/s11095-016-1987-0)

  79. 79
    Preparation and characterization of electrospun nanofibers containing glutamine

    Tort, S., & Acartürk, F. (2016). Preparation and characterization of electrospun nanofibers containing glutamine. Carbohydrate Polymers, 152, 802–814. doi:10.1016/j.carbpol.2016.07.028

    (https://www.sciencedirect.com/science/article/pii/S0144861716308177)

  80. 80
    Yap?l? Poli(Akrilonitril-Vinil Asetat)/Grafen Oksit Yap?lar?n Karakterizasyonu

    T?YEK, ? , YAZICI, M , ALMA, M , D?NMEZ, U , YILDIRIM, B , SALAN, T , URU?, S , KARATA?, ? , KARTER?, ? . (2016). Nanolif Yap?l? Poli (Akrilonitril-Vinil Asetat)/ Grafen Oksit Yap?lar?n Karakterizasyonu. Tekstil ve Mühendis, 23 (102), 0-0.

    (https://dergipark.org.tr/teksmuh/issue/24718/261437)

  81. 81
    Durable adhesives based on electrospun poly(vinylidene fluoride) fibers

    Sahay, R., Baji, A., Ranganath, A. S., & Anand Ganesh, V. (2016). Durable adhesives based on electrospun poly(vinylidene fluoride) fibers. Journal of Applied Polymer Science, 134(2). doi:10.1002/app.44393

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.44393)

  82. 82
    Electrospinning—Commercial Applications, Challenges and Opportunities

    Kannan, B., Cha, H., & Hosie, I. C. (2016). Electrospinning—Commercial Applications, Challenges and Opportunities. Nano-Size Polymers, 309–342. doi:10.1007/978-3-319-39715-3_11

    (https://link.springer.com/chapter/10.1007/978-3-319-39715-3_11)

  83. 83
    US20160274030A1 Compositions and methods for measurement of analytes

    Northeastern University, Boston, MA(US) (2016). Compositions and methods for measurement of analytes. US20160274030A1.

    (https://patents.google.com/patent/US20160274030A1/en)

  84. 84
    Effect Of Ethylene Oxide, Autoclave and Ultra Violet Sterilizations On Surface Topography Of Pet Electrospun Fibers

    Sebnem DUZYER [1], Asli HOCKENBERGER [2], Agah UGUZ [3], Elif EVKE [4], ZeynepKAHVEC? [5]. 358 412. Uluda? University Journal of The Faculty of Engineering, 21 (2), 201-218. DOI: 10.17482/uujfe.04230

    (https://doi.org/10.17482/uujfe.04230)

  85. 85
    Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications

    Sahay, R., Parveen, H., Baji, A., Ganesh, V. A., & Ranganath, A. S. (2016). Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications. Journal of Materials Science, 52(5), 2435–2441. doi:10.1007/s10853-016-0537-9

    (https://link.springer.com/article/10.1007/s10853-016-0537-9)

  86. 86
    Investigation of in vitro mineralization of silicate-based 45S5 and 13-93 bioactive glasses in artificial saliva for dental applications

    Deliormanl?, A. M. (2017). Investigation of in vitro mineralization of silicate-based 45S5 and 13-93 bioactive glasses in artificial saliva for dental applications. Ceramics International, 43(4), 3531–3539. doi:10.1016/j.ceramint.2016.11.078

    (https://www.sciencedirect.com/science/article/pii/S0272884216320697)

  87. 87
    Hierarchical Structured Electrospun Nanofibers for Improved Fog Harvesting Applications

    Ganesh, V. A., Ranganath, A. S., Baji, A., Raut, H. K., Sahay, R., & Ramakrishna, S. (2016). Hierarchical Structured Electrospun Nanofibers for Improved Fog Harvesting Applications. Macromolecular Materials and Engineering, 302(2), 1600387. doi:10.1002/mame.201600387

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201600387)

  88. 88
    A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability

    ?spirli Do?a?, Y., Deveci, ?., Mercimek, B., & Teke, M. (2017). A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability. International Journal of Biological Macromolecules, 96, 302–311. doi:10.1016/j.ijbiomac.2016.11.120

    (https://www.sciencedirect.com/science/article/pii/S0141813016319572)

  89. 89
    Crystallisation of amorphous fenofibrate and potential of the polymer blend electrospun matrices to stabilise in its amorphous form

    Tipduangta, P. (2016). Retrieved from https://ueaeprints.uea.ac.uk/61721/

    (https://ueaeprints.uea.ac.uk/61721/)

  90. 90
    Smartphone-based detection of dyes in water for environmental sustainability

    Smartphone-based detection of dyes in water for environmental sustainability. Analytical Methods, 9(4), 579–585. doi:10.1039/c6ay03073d

    (https://pubs.rsc.org/en/content/articlelanding/2016/ay/c6ay03073d/unauth#!divAbstract)

  91. 91
    Tailoring of Architecture and Intrinsic Structure of Electrospun Nanofibers by Process Parameters for Tissue Engineering Applications

    Kolbuk, D. (2016). Tailoring of Architecture and Intrinsic Structure of Electrospun Nanofibers by Process Parameters for Tissue Engineering Applications. Nanofiber Research – Reaching New Heights. doi:10.5772/64177

    (http://dx.doi.org/10.5772/64177)

  92. 92
    Physical and Chemical Properties of Poly (l-lactic acid)/Graphene Oxide Nanofibers for Nerve Regeneration

    ?ztatl?, H., & Ege, D. (2016). Physical and Chemical Properties of Poly (l-lactic acid)/Graphene Oxide Nanofibers for Nerve Regeneration. MRS Advances, 2(24), 1291–1296. doi:10.1557/adv.2016.663

    (https://doi.org/10.1557/adv.2016.663)

  93. 93
    Drug Delivery and Development of Anti-HIV Microbicides

    das Neves, J. (Ed.), Sarmento, B. (Ed.). (2015). Drug Delivery and Development of Anti-HIV Microbicides. New York: Jenny Stanford Publishing, https://doi.org/10.1201/b17559

    (https://doi.org/10.1201/b17559)

  94. 94
    Thin film composite membranes for forward osmosis supported by commercial nanofiber nonwovens

    Maqsud R. Chowdhury, Liwei Huang, and Jeffrey R. McCutcheon

    Industrial & Engineering Chemistry Research 2017 56 (4), 1057-1063

    DOI: 10.1021/acs.iecr.6b04256

    (https://pubs.acs.org/doi/abs/10.1021/acs.iecr.6b04256)

  95. 95
    Dry-adhesives based on hierarchical poly (methyl methacrylate) electrospun fibers

    Sahay, R., Baji, A., Parveen, H., & Ranganath, A. S. (2017). Dry-adhesives based on hierarchical poly(methyl methacrylate) electrospun fibers. Applied Physics A, 123(3). doi:10.1007/s00339-017-0816-6

    (https://link.springer.com/article/10.1007/s00339-017-0816-6)

  96. 96
    Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality

    Cerkez I, Sezer A, Bhullar SK. 2017 Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality.R. Soc. open sci. 4: 160911. http://dx.doi.org/10.1098/rsos.160911

    (https://royalsocietypublishing.org/doi/full/10.1098/rsos.160911)

  97. 97
    Recent Advances in Needleless Electrospinning of Ultrathin Fibers: From Academia to Industrial Production

    Yu, M., Dong, R.-H., Yan, X., Yu, G.-F., You, M.-H., Ning, X., & Long, Y.-Z. (2017). Recent Advances in Needleless Electrospinning of Ultrathin Fibers: From Academia to Industrial Production. Macromolecular Materials and Engineering, 302(7), 1700002. doi:10.1002/mame.201700002

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700002)

  98. 98
    Thermoresponsive electrospun membrane with enhanced wettability

    Ranganath, A. S., Ganesh, V. A., Sopiha, K., Sahay, R., & Baji, A. (2017). Thermoresponsive electrospun membrane with enhanced wettability. RSC Adv., 7(32), 19982–19989. doi:10.1039/c6ra27848e

    (https://pubs.rsc.org/en/content/articlehtml/2017/ra/c6ra27848e)

  99. 99
    Electrospun Bead-On-String Hierarchical Fibers for Fog Harvesting Application

    Thakur, N., Ranganath, A. S., Agarwal, K., & Baji, A. (2017). Electrospun Bead-On-String Hierarchical Fibers for Fog Harvesting Application. Macromolecular Materials and Engineering, 302(7), 1700124. doi:10.1002/mame.201700124

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700124)

  100. 100
    Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications

    Yilmaz, M., Erkartal, M., Ozdemir, M., Sen, U., Usta, H., & Demirel, G. (2017). Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications. ACS Applied Materials & Interfaces, 9(21), 18199–18206. doi:10.1021/acsami.7b03042

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b03042)

  101. 101
    A high flux polyvinyl acetate-coated electrospun nylon 6/SiO2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance

    Islam, M. S., McCutcheon, J. R., & Rahaman, M. S. (2017). A high flux polyvinyl acetate-coated electrospun nylon 6/SiO 2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance. Journal of Membrane Science, 537, 297–309. doi:10.1016/j.memsci.2017.05.019

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b03042)

  102. 102
    Effect of pillar aspect ratio on shear adhesion strength of hierarchical electrospun fibrous structures

    Sahay, R., & Baji, A. (2017). Effect of pillar aspect ratio on shear adhesion strength of hierarchical electrospun fibrous structures. Journal of Materials Science, 52(17), 10592–10599. doi:10.1007/s10853-017-1191-6

    (https://link.springer.com/article/10.1007/s10853-017-1191-6)

  103. 103
    Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination

    Aksoy, O. E., Ates, B., & Cerkez, I. (2017). Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination. Journal of Materials Science, 52(17), 10013–10022. doi:10.1007/s10853-017-1240-1

    (https://link.springer.com/article/10.1007/s10853-017-1240-1)

  104. 104
    Effects of pre-and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions

    Asadian, M., Grande, S., Morent, R., Nikiforov, A., Declercq, H., & De Geyter, N. (2017). Effects of pre- and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions. Journal of Physics: Conference Series, 841, 012018. doi:10.1088/1742-6596/841/1/012018

    (https://iopscience.iop.org/article/10.1088/1742-6596/841/1/012018/meta)

  105. 105
    Filtration of juices by using electrospun pan membrane

    ALTAY F?L?Z,AZIZZADEH FARZANEH, The Fifth International Symposium Frontiers in Polymer Science (POLY 2017), Seville/?SPANYA, 17 May?s 2017

    (https://akademi.itu.edu.tr/search-results?st=PAN%20polymer)

  106. 106
    Fundamental Investigation of PhotoActive Materials From Small Molecules to Materials

    Livshits, M. (2017). Fundamental Investigation of PhotoActive Materials From Small Molecules to Materials. (Electronic Thesis or Dissertation). Retrieved from https://etd.ohiolink.edu/

    (https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:ohiou1490713190973503)

  107. 107
    Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility

    KARAMAN, M., G?RSOY, M., AYK?L, F., TOSUN, Z., KARS, M. D., & YILDIZ, H. B. (2017). Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility. Plasma Science and Technology, 19(8), 085503. doi:10.1088/2058-6272/aa6fec

    (https://iopscience.iop.org/article/10.1088/2058-6272/aa6fec/meta)

  108. 108
    Mechanical properties and fatigue analysis on poly(ε- caprolactone)-polydopamine-coated nanofibers and poly(ε- caprolactone)-carbon nanotube composite scaffolds

    Fernández, J., Auzmendi, O., Amestoy, H., Diez-Torre, A., & Sarasua, J.-R. (2017). Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers and poly(ε-caprolactone)-carbon nanotube composite scaffolds. European Polymer Journal, 94, 208–221. doi:10.1016/j.eurpolymj.2017.07.013

    (https://www.sciencedirect.com/science/article/pii/S0014305717302999)

  109. 109
    Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing

    Tort, S., Acartürk, F., & Be?ikci, A. (2017). Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing. International Journal of Pharmaceutics, 529(1-2), 642–653. doi:10.1016/j.ijpharm.2017.07.027

    (https://www.sciencedirect.com/science/article/pii/S0378517317306269)

  110. 110
    Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells

    Wanjare, M., Hou, L., Nakayama, K. H., Kim, J. J., Mezak, N. P., Abilez, O. J., … Huang, N. F. (2017). Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomaterials Science, 5(8), 1567–1578. doi:10.1039/c7bm00323d

    (https://pubs.rsc.org/en/content/articlelanding/2017/bm/c7bm00323d/unauth#!divAbstract)

  111. 111
    Thermoresponsive Cellulose Acetate?Poly(N‐isopropylacrylamide) Core?Shell Fibers for Controlled Capture and Release of Moisture

    Thakur, N., Sargur Ranganath, A., Sopiha, K., & Baji, A. (2017). Thermoresponsive Cellulose Acetate–Poly(N-isopropylacrylamide) Core–Shell Fibers for Controlled Capture and Release of Moisture. ACS Applied Materials & Interfaces, 9(34), 29224–29233. doi:10.1021/acsami.7b07559

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b07559 )

  112. 112
    Microfibrous scaffolds enhance endothelial differentiation and organization of induced pluripotent stem cells

    Kim, J. J., Hou, L., Yang, G., Mezak, N. P., Wanjare, M., Joubert, L. M., & Huang, N. F. (2017). Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells. Cellular and Molecular Bioengineering, 10(5), 417–432. doi:10.1007/s12195-017-0502-y

    (https://link.springer.com/article/10.1007/s12195-017-0502-y)

  113. 113
    Atmospheric pressure plasma jet treatment of poly-ε-caprolactone polymer solutions to improve electrospinning

    Grande, S., Van Guyse, J., Nikiforov, A. Y., Onyshchenko, I., Asadian, M., Morent, R., … De Geyter, N. (2017). Atmospheric Pressure Plasma Jet Treatment of Poly-ε-caprolactone Polymer Solutions To Improve Electrospinning. ACS Applied Materials & Interfaces, 9(38), 33080–33090. doi:10.1021/acsami.7b08439

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b08439)

  114. 114
    Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering

    Ramphul, H., Bhaw-Luximon, A., & Jhurry, D. (2017). Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering. Carbohydrate Polymers, 178, 238–250. doi:10.1016/j.carbpol.2017.09.046

    (https://www.sciencedirect.com/science/article/pii/S0144861717310718)

  115. 115
    Thermoresponsive electrospun fibers for water harvesting applications

    Thakur, N., Baji, A., & Ranganath, A. S. (2018). Thermoresponsive electrospun fibers for water harvesting applications. Applied Surface Science, 433, 1018–1024. doi:10.1016/j.apsusc.2017.10.113

    (https://www.sciencedirect.com/science/article/pii/S0169433217330593)

  116. 116
    Effects of a Dielectric Barrier Discharge (DBD) Treatment on Chitosan/Polyethylene Oxide Nanofibers and Their Cellular Interactions

    Asadian, M., Onyshchenko, I., Thukkaram, M., Esbah Tabaei, P. S., Van Guyse, J., Cools, P., … De Geyter, N. (2018). Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. Carbohydrate Polymers. doi:10.1016/j.carbpol.2018.08.092

    (https://www.sciencedirect.com/science/article/pii/S0144861718310002)

  117. 117
    Effects of plasma treatment on the surface chemistry, wettability, and cellular interactions of nanofibrous Scaffolds

    Asadian, M., Declercq, H., Cornelissen, M., Morent, R., & De Geyter, N. (2017). Effects of plasma treatment on the surface chemistry, wettability, and cellular interactions of nanofibrous Scaffolds. In 31st International conference on surface modification technologies. (https://biblio.ugent.be/publication/8532609/file/8532610)

  118. 118
    Electrospinning: A versatile processing technology for producing nanofibrous materials for biomedical and tissue-engineering applications

    Senthamizhan, A., Balusamy, B., & Uyar, T. (2017). Electrospinning: A versatile processing technology for producing nanofibrous materials for biomedical and tissue-engineering applications. In Electrospun Materials for Tissue Engineering and Biomedical Applications (pp. 3-41). Woodhead Publishing.

    (https://doi.org/10.1016/B978-0-08-101022-8.00001-6)

  119. 119
    Solution electrospinning of nanofibers

    Salas, C. (2017). Solution electrospinning of nanofibers. In Electrospun Nanofibers (pp. 73-108). Woodhead Publishing.

    (http://dx.doi.org/10.1016/B978-0-08-100907-9.00004-0)

  120. 120
    Microesferas magne?ticas de polifluoruro de vinilideno para estimulacio?n celular in vitro. Determinacio?n y control de los para?metros del proceso de fabricacio?n

    CH?LIZ SANZ, SOF?A. (2017). Microesferas magnéticas de polifluoruro de vinilideno para estimulación celular in vitro. Determinación y control de los parámetros del proceso de fabricación.

    (https://riunet.upv.es/handle/10251/89154)

  121. 121
    Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine

    Kili?, E., Yakar, A., & Bayramgil, N. P. (2018). Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine. Journal of Materials Science: Materials in Medicine, 29(1), 8.

    (https://link.springer.com/article/10.1007/s10856-017-6013-5)

  122. 122
    Production and characterization of electrospun fish sarcoplasmic protein based nanofibers

    Sahin, Y. M., Su, S., Ozbek, B., Yücel, S., Pinar, O., Kazan, D., … & Gunduz, O. (2018). Production and characterization of electrospun fish sarcoplasmic protein based nanofibers. Journal of food engineering, 222, 54-62.

    (https://doi.org/10.1016/j.jfoodeng.2017.11.013)

  123. 123
    Production of the novel fibrous structure of poly(ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering

    Ozbek, B., Erdogan, B., Ekren, N., Oktar, F. N., Akyol, S., Ben-Nissan, B., … & Ozen, G. (2018). Production of the novel fibrous structure of poly (ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering. Journal of the Australian Ceramic Society, 54(2), 251-260.

    (https://link.springer.com/article/10.1007/s41779-017-0149-0)

  124. 124
    Raising Nanofiber Output- The Progress, Mechanisms, Challenges, and Reasons for the Pursuit

    Akampumuza, O., Gao, H., Zhang, H., Wu, D., & Qin, X. H. (2018). Raising nanofiber output: the progress, mechanisms, challenges, and reasons for the pursuit. Macromolecular Materials and Engineering, 303(1), 1700269. (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700269)

  125. 125
    Electrospun Janus Membrane for Efficient and Switchable Oil–Water Separation

    Ranganath, A. S., & Baji, A. (2018). Electrospun Janus Membrane for Efficient and Switchable Oil–Water Separation. Macromolecular Materials and Engineering, 303(11), 1800272.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201800272)

  126. 126
    Anti-corrosion coating for magnesium alloys- electrospun superhydrophobic polystyrene/SiO2 composite fibers

    Polat, N. H., Kap, ?., & Farzaneh, A. (2018). Anticorrosion coating for magnesium alloys: electrospun superhydrophobic polystyrene/SiO $ _ {2} $ composite fibers. Turkish Journal of Chemistry, 42(3), 672-683.

    (https://dergipark.org.tr/tr/pub/tbtkchem/issue/45567/572684)

  127. 127
    A comparative study of electrospinning process for two different collectors- The effect of the collecting method on the nanofiber diameters

    ?AVDAR, F. Y., & U?UZ, A. (2019). A comparative study of electrospinning process for two different collectors: The effect of the collecting method on the nanofiber diameters. Mechanical Engineering Journal, 6(1), 18-00298.

    (https://www.jstage.jst.go.jp/article/mej/6/1/6_18-00298/_article/-char/ja/)

  128. 128
    A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior

    Kabay, G., Demirci, C., Can, G. K., Meydan, A. E., Da?an, B. G., & Mutlu, M. (2018). A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior. International journal of biological macromolecules, 114, 989-997.

    (https://www.sciencedirect.com/science/article/pii/S0141813018301107)

  129. 129
    A review of low density porous materials used in laser plasma experiments

    Nagai, K., Musgrave, C. S., & Nazarov, W. (2018). A review of low density porous materials used in laser plasma experiments. Physics of Plasmas, 25(3), 030501.

    (https://aip.scitation.org/doi/full/10.1063/1.5009689)

  130. 130
    Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption

    Buck, E., Maisuria, V., Tufenkji, N., & Cerruti, M. (2018). Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption. ACS Applied Bio Materials, 1(3), 627-635.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00112)

  131. 131
    Bioactive glass/hydroxyapatite- containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering

    Deliormanl?, A. M., & Konyal?, R. (2019). Bioactive glass/hydroxyapatite-containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering. Journal of the Australian Ceramic Society, 55(1), 247-256.

    (https://link.springer.com/article/10.1007/s41779-018-0229-9)

  132. 132
    Core–Shell Hybrid Nanowires with Protein Enabling Fast Ion Conduction for High‐Performance Composite Polymer Electrolytes

    Fu, X., Wang, Y., Fan, X., Scudiero, L., & Zhong, W. H. (2018). Core–Shell Hybrid Nanowires with Protein Enabling Fast Ion Conduction for High‐Performance Composite Polymer Electrolytes. Small, 14(49), 1803564.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201803564)

  133. 133
    Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines

    Kim, S., Traore, Y. L., Ho, E. A., Shafiq, M., Kim, S. H., & Liu, S. (2018). Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines. Acta biomaterialia, 82, 12-23.

    (https://www.sciencedirect.com/science/article/pii/S1742706118305932)

  134. 134
    Development and characterization of methylprednisolone loaded delayed release nanofibers

    Turanl?, Y., Tort, S., & Acartürk, F. (2019). Development and characterization of methylprednisolone loaded delayed release nanofibers. Journal of Drug Delivery Science and Technology, 49, 58-65.

    (https://www.sciencedirect.com/science/article/pii/S1773224718307780)

  135. 135
    Development of Carbon Nanofiber Yarns by Electrospinning

    Demir, A., Acikabak, B., & Ahan, Z. (2018, December). Development of Carbon Nanofiber Yarns by Electrospinning. In IOP Conference Series: Materials Science and Engineering (Vol. 460, No. 1, p. 012027). IOP Publishing.

    (https://iopscience.iop.org/article/10.1088/1757-899X/460/1/012027/meta)

  136. 136
    Effect of heat treatment conditions on magnesium borate fibers prepared via electrospinning

    Storti, E., Jankovsk?, O., Colombo, P., & Aneziris, C. G. (2018). Effect of heat treatment conditions on magnesium borate fibers prepared via electrospinning. Journal of the European Ceramic Society, 38(11), 4109-4117.

    (https://www.sciencedirect.com/science/article/abs/pii/S0955221918302632)

  137. 137
    Effect of polyvinyl alcohol (PVA)/chitosan (CS) blend ratios on morphological, optical and thermal properties of electrospun nanofibers

    A?IK, G., Kamaci, M., ?ZATA, B., & CANSOY, C. E. ?. (2019). Effect of polyvinyl alcohol/chitosan blend ratios on morphological, optical, and thermal properties of electrospun nanofibers. Turkish Journal of Chemistry, 43(1), 137-149.

    (https://dergipark.org.tr/tr/pub/tbtkchem/issue/45572/572771)

  138. 138
    Effect of temperature, viscosity and surface tension on gelatine structures produced by modified 3D printer

    Kalkandelen, C., Ozbek, B., Ergul, N. M., Akyol, S., Moukbil, Y., Oktar, F. N., … & Gunduz, O. (2017, December). Effect of temperature, viscosity and surface tension on gelatine structures produced by modified 3D printer. In IOP Conference Series: Materials Science and Engineering (Vol. 293, No. 1, p. 012001). IOP Publishing.

    (https://iopscience.iop.org/article/10.1088/1757-899X/293/1/012001/meta)

  139. 139
    Effects of Polymethylsilsesquioxane concentration on morphology shape of electrosprayed particles

    Unal, S., Oktar, F. N., & Gunduz, O. (2018). Effects of Polymethylsilsesquioxane concentration on morphology shape of electrosprayed particles. Materials Letters, 221, 107-110.

    (https://www.sciencedirect.com/science/article/abs/pii/S0167577X18304786)

  140. 140
    Electrospinning for membrane fabrication- Strategies and applications

    Tijing, L. D., Woo, Y. C., Yao, M., Ren, J., & Shon, H. K. (2017). 1.16 Electrospinning for Membrane Fabrication: Strategies and Applications. Comprehensive Membrane Science and Engineering, 418–444. doi:10.1016/b978-0-12-409547-2.12262-0

    (https://www.researchgate.net/publication/313668516_Electrospinning_for_Membrane_Fabrication_Strategies_and_Applications)

  141. 141
    Electrospinning of tri-acetyl-β-cyclodextrin (TA-β-CD) functionalized low-density polyethylene to minimize sulfur odor volatile compounds

    Shin, J., Lee, E. J., & Ahn, D. U. (2018). Electrospinning of tri-acetyl-β-cyclodextrin (TA-β-CD) functionalized low-density polyethylene to minimize sulfur odor volatile compounds. Food Packaging and Shelf Life, 18, 107-114.

    (https://www.sciencedirect.com/science/article/abs/pii/S2214289418302448)

  142. 142
    Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives

    Demirkurt, M., Olcer, Y. A., Demir, M. M., & Eroglu, A. E. (2018). Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives. Analytica chimica acta, 1014, 1-9.

    (https://www.sciencedirect.com/science/article/pii/S0003267018302058)

  143. 143
    Encapsulation of indocyanine green in poly(lactic acid) nanofibers for using as a nanoprobe in biomedical diagnostics

    Ege, Z. R., Akan, A., Oktar, F. N., Lin, C. C., Karademir, B., & Gunduz, O. (2018). Encapsulation of indocyanine green in poly (lactic acid) nanofibers for using as a nanoprobe in biomedical diagnostics. Materials Letters, 228, 148-151.

    (https://www.sciencedirect.com/science/article/abs/pii/S0167577X18309133)

  144. 144
    Fabrication of electrospun poly(ethylene terephthalate) scaffolds: Characterization and their potential on cell proliferation in vitro

    D?ZYER, ?. (2017). FABRICATION OF ELECTROSPUN POLY (ETHYLENE TEREPHTHALATE) SCAFFOLDS: CHARACTERIZATION AND THEIR POTENTIAL ON CELL PROLIFERATION IN VITRO. TEKST?L VE KONFEKS?YON, 27(4), 334-341.

    (https://dergipark.org.tr/tr/pub/tekstilvekonfeksiyon/issue/33462/372022)

  145. 145
    Fabrication of Antibacterial Polyvinylalcohol Nanocomposite Mats with Soluble Starch Coated Silver Nanoparticles

    Aktürk, A., Taygun, M. E., Güler, F. K., Goller, G., & Kü?ükbayrak, S. (2019). Fabrication of antibacterial polyvinylalcohol nanocomposite mats with soluble starch coated silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 255-262.

    (https://www.sciencedirect.com/science/article/abs/pii/S0927775718310252)

  146. 146
    Fabrication of PEOT/PBT Nanofibers by Atmospheric Pressure Plasma Jet Treatment of Electrospinning Solutions for Tissue Engineering

    Grande, S., Cools, P., Asadian, M., Van Guyse, J., Onyshchenko, I., Declercq, H., … & De Geyter, N. (2018). Fabrication of PEOT/PBT nanofibers by atmospheric pressure plasma jet treatment of electrospinning solutions for tissue engineering. Macromolecular Bioscience, 18(12), 1800309.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mabi.201800309)

  147. 147
    Highly Hydrophobic Electrospun Reduced Graphene Oxide/Poly(vinylidene fluoride-co-hexafluoropropylene) Membranes for Use in Membrane Distillation

    Chen, T., Soroush, A., & Rahaman, M. S. (2018). Highly Hydrophobic Electrospun Reduced Graphene Oxide/Poly (vinylidene fluoride-co-hexafluoropropylene) Membranes for Use in Membrane Distillation. Industrial & Engineering Chemistry Research, 57(43), 14535-14543.

    (https://pubs.acs.org/doi/abs/10.1021/acs.iecr.8b03584)

  148. 148
    Interfacial Polymerization with Electrosprayed Microdroplets- Toward Controllable and Ultrathin Polyamide Membranes

    Ma, X. H., Yang, Z., Yao, Z. K., Guo, H., Xu, Z. L., & Tang, C. Y. (2018). Interfacial polymerization with electrosprayed microdroplets: Toward controllable and ultrathin polyamide membranes. Environmental Science & Technology Letters, 5(2), 117-122.

    (https://pubs.acs.org/doi/abs/10.1021/acs.estlett.7b00566)

  149. 149
    Investigation of plasma‐induced chemistry in organic solutions for enhanced electrospun PLA nanofibers

    Rezaei, F., Gorbanev, Y., Chys, M., Nikiforov, A., Van Hulle, S. W., Cos, P., … & De Geyter, N. (2018). Investigation of plasma‐induced chemistry in organic solutions for enhanced electrospun PLA nanofibers. Plasma Processes and Polymers, 15(6), 1700226.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/ppap.201700226)

  150. 150
    Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications

    Avsar, G., Agirbasli, D., Agirbasli, M. A., Gunduz, O., & Oner, E. T. (2018). Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications. Carbohydrate polymers, 193, 316-325.

    (https://www.sciencedirect.com/science/article/pii/S0144861718303382)

  151. 151
    Micro-Nanofibrillar Polycaprolactone Scaffolds as Translatable Osteoconductive Grafts for the Treatment of Musculoletal Defects without Infection

    Ghannadian, P., Moxley Jr, J. W., Machado de Paula, M. M., Lobo, A. O., & Webster, T. J. (2018). Micro-Nanofibrillar Polycaprolactone Scaffolds as Translatable Osteoconductive Grafts for the Treatment of Musculoletal Defects without Infection. ACS Applied Bio Materials, 1(5), 1566-1578.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00453)

  152. 152
    Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma- alignment, antibacterial activity, and biocompatibility

    Arik, N., Inan, A., Ibis, F., Demirci, E. A., Karaman, O., Ercan, U. K., & Horzum, N. (2019). Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma: alignment, antibacterial activity, and biocompatibility. Polymer Bulletin, 76(2), 797-812.

    (https://link.springer.com/article/10.1007/s00289-018-2409-8)

  153. 153
    Morphological and Mechanical Characterization of Electrospun Polylactic Acid and Microcrystalline Cellulose

    Gaitán, A., & Gacitúa, W. (2018). Morphological and mechanical characterization of electrospun polylactic acid and microcrystalline cellulose. BioResources, 13(2), 3659-3673.

    (https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_2_3659_Gaitan_Morphological_Mechanical_Electrospun_Cellulose)

  154. 154
    Nanofibered Gelatin‐Based Nonwoven Elasticity Promotes Epithelial Histogenesis

    Jedrusik, N., Meyen, C., Finkenzeller, G., Stark, G. B., Meskath, S., Schulz, S. D., … & Tomakidi, P. (2018). Nanofibered Gelatin‐Based Nonwoven Elasticity Promotes Epithelial Histogenesis. Advanced healthcare materials, 7(10), 1700895.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201700895)

  155. 155
    PA6 nanofibre production: A comparison between rotary jet spinning and electrospinning

    Rogalski, J., Bastiaansen, C., & Peijs, T. (2018). PA6 nanofibre production: A comparison between rotary jet spinning and electrospinning. Fibers, 6(2), 37.

    (https://www.mdpi.com/2079-6439/6/2/37)

  156. 156
    Patent - US20180142379A1 - Electrospinning of fluoropolymers

    Poss, A. J., Nalewajek, D., Cantlon, C. L., Lu, C., & Wo, S. (2018). U.S. Patent Application No. 15/802,673.

    (https://patents.google.com/patent/US20180142379A1/en)

  157. 157
    Patent - US20180215882A1 - Swellable and insoluble nanofibers and use thereof in the treatment of essentially aqueous effluents

    Viel, P., Benzaqui, M., & Shilova, E. (2018). U.S. Patent Application No. 15/750,044.

    (https://patents.google.com/patent/US20180215882A1/en)

  158. 158
    Patent - US20180301690A1 - Metal oxide nanofiber electrode and method

    Ozkan, C. S., Ozkan, M., Bell, J., & Ye, R. (2018). U.S. Patent Application No. 15/776,720. (https://patents.google.com/patent/US20180301690A1/en)

  159. 159
    Plasma Modification of Poly Lactic Acid Solutions to Generate High Quality Electrospun PLA Nanofibers

    Rezaei, F., Nikiforov, A., Morent, R., & De Geyter, N. (2018). Plasma modification of poly lactic acid solutions to generate high quality electrospun PLA nanofibers. Scientific reports, 8(1), 2241.

    (https://www.nature.com/articles/s41598-018-20714-5)

  160. 160
    Polivinil alkol kompozit nanoliflerin haz?rlanmas? ve kat?-faz polivinil alkol'u?n fotokatalitik bozunmas?

    K?ysüren, H. N., & K?ysüren, ?. (2018). Polivinil alkol kompozit nanoliflerin haz?rlanmas? ve kat?-faz polivinil alkolün fotokatalitik bozunmas?. Journal of the Faculty of Engineering & Architecture of Gazi University, 33(4).

    (https://dergipark.org.tr/tr/download/article-file/601784)

  161. 161
    Polymeric and metal oxide structured nanofibrous composites fabricated by electrospinning as highly efficient hydrogen evolution catalyst

    Figen, A. K., & Filiz, B. C. (2019). Polymeric and metal oxide structured nanofibrous composites fabricated by electrospinning as highly efficient hydrogen evolution catalyst. Journal of colloid and interface science, 533, 82-94.

    (https://www.sciencedirect.com/science/article/pii/S0021979718309639)

  162. 162
    Preparation and mineralization of 13-93 bioactive glass-containing electrospun poly-epsilon-caprolactone composite nanofibrous mats

    Konyal?, R., & Deliormanl?, A. M. (2019). Preparation and mineralization of 13-93 bioactive glass-containing electrospun poly-epsilon-caprolactone composite nanofibrous mats. Journal of Thermoplastic Composite Materials, 32(5), 690-709.

    (https://journals.sagepub.com/doi/abs/10.1177/0892705718772889)

  163. 163
    Salinomycin-loaded Nanofibers for Glioblastoma Therapy

    Norouzi, M., Abdali, Z., Liu, S., & Miller, D. W. (2018). Salinomycin-loaded Nanofibers for Glioblastoma Therapy. Scientific reports, 8(1), 9377.

    (https://www.nature.com/articles/s41598-018-27733-2)

  164. 164
    Spunbond Dokusuz Tekstil Yu?zeyi U?zerine Elektro C?ekim Yo?ntemi ile Nano Boyutta Grafen Kaplanmas? ve Karakterizasyonu

    ALMA, M. H., YAZICI, M., YILDIRIM, B., & T?YEK, ?. (2017). Spunbond Dokusuz Tekstil Yüzeyi ?zerine Elektro ?ekim Y?ntemi ile Nano Boyutta Grafen Kaplanmas? ve Karakterizasyonu. Tekstil ve Mühendis, 24(108), 243-253.

    (https://dergipark.org.tr/tr/pub/teksmuh/issue/33861/374969)

  165. 165
    Superhydrophobic EVA copolymer fibers- the impact of chemical composition on wettability and photophysical properties

    Acik, G., Kamaci, M., & Cansoy, C. E. (2018). Superhydrophobic EVA copolymer fibers: the impact of chemical composition on wettability and photophysical properties. Colloid and Polymer Science, 296(11), 1759-1766.

    (https://link.springer.com/article/10.1007/s00396-018-4395-7)

  166. 166
    The investigation of the electromagnetic shielding effectiveness of multi-layered nanocomposite materials from reduced graphene oxide-doped P(AN-VAc) nanofiber mats/PP spunbond

    Tiyek, ?., Yaz?c?, M., Alma, M. H., & Karata?, ?. (2019). The investigation of the electromagnetic shielding effectiveness of multi-layered nanocomposite materials from reduced graphene oxide-doped P (AN-VAc) nanofiber mats/PP spunbond. Journal of Composite Materials, 53(11), 1541-1553.

    (https://journals.sagepub.com/doi/abs/10.1177/0021998318806973)

  167. 167
    The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility

    Isik, B. S., Altay, F., & Capanoglu, E. (2018). The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food chemistry, 265, 260-273.

    (https://www.sciencedirect.com/science/article/pii/S0308814618308719)

  168. 168
    Thermal Conductivity of Electrospun Polyethylene Nanofibers

    Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., … & Li, D. (2015). Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale, 7(40), 16899-16908.

    (https://pubs.rsc.org/en/content/articlelanding/2015/nr/c5nr04995d/unauth#!divAbstract)

  169. 169
    Bacteria-triggered release of a potent biocide from core-shell polyhydroxyalkanoate (PHA)-based nanofibers for wound dressing application

    Li, W. (2018). Bacteria-triggered release of a potent biocide from core-shell polyhydroxyalkanoate (PHA)-based nanofibers for wound dressing application.

    (https://mspace.lib.umanitoba.ca/handle/1993/33473)

  170. 170
    Studium kinetiky funkcionalizace povrchu nanovla?ken po aktivaci plazmatem

    R??ek, V. (2018). Studium kinetiky funkcionalizace povrchu nanovláken po aktivaci plazmatem.

    (https://dspace.tul.cz/handle/15240/32257)

  171. 171
    Using Of Nanofiber Based Electrodes For Detection Of Organic Molecules

    Ma?hemut?, A. (2018). Using Of Nanofiber Based Electrodes For Detection Of Organic Molecules (Master’s thesis, Fen Bilimleri Enstitüsü).

    (http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/4603)

  172. 172
    Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters

    Ghobeira, R., Asadian, M., Vercruysse, C., Declercq, H., De Geyter, N., & Morent, R. (2018). Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. Polymer, 157, 19-31.

    (https://www.sciencedirect.com/science/article/pii/S0032386118309455)

  173. 173
    A comparative study on pre- and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions

    Asadian, M., Grande, S., Onyshchenko, I., Morent, R., Declercq, H., & De Geyter, N. (2019). A comparative study on pre-and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions. Applied Surface Science, 481, 1554-1565.

    (https://www.sciencedirect.com/science/article/pii/S0169433219308554)

  174. 174
    Bacteria-Responsive Single and Core–Shell Nanofibrous Membranes Based on Polycaprolactone/Poly(ethylene succinate) for On-Demand Release of Biocides

    Abdali, Z., Logsetty, S., & Liu, S. (2019). Bacteria-Responsive Single and Core–Shell Nanofibrous Membranes Based on Polycaprolactone/Poly (ethylene succinate) for On-Demand Release of Biocides. ACS Omega, 4(2), 4063-4070.

    (https://pubs.acs.org/doi/abs/10.1021/acsomega.8b03137)

  175. 175
    Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (ε-caprolactone) Nanofiber Meshes

    Chan, K. V., Asadian, M., Onyshchenko, I., Declercq, H., Morent, R., & De Geyter, N. (2019). Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (ε-caprolactone) Nanofiber Meshes. Nanomaterials, 9(9), 1215.

    (https://www.mdpi.com/2079-4991/9/9/1215)

  176. 176
    Bioinspired scaffold induced regeneration of neural tissue

    Altun, E., Aydogdu, M. O., Togay, S. O., Sengil, A. Z., Ekren, N., Haskoylu, M. E., … & Ahmed, J. (2019). Bioinspired scaffold induced regeneration of neural tissue. European Polymer Journal, 114, 98-108.

    (https://www.sciencedirect.com/science/article/pii/S0014305718324765)

  177. 177
    Biomimetic hybrid scaffold consisting of co-electrospun collagen and PLLCL for 3D cell culture

    Türker, E., Yildiz, ?. H., & Yildiz, A. A. (2019). Biomimetic hybrid scaffold consisting of co-electrospun collagen and PLLCL for 3D cell culture. International journal of biological macromolecules.

    (https://www.sciencedirect.com/science/article/pii/S0141813019350019)

  178. 178
    Development of TiO2 nanofibers based semiconducting humidity sensor- adsorption kinetics and DFT computations

    Farzaneh, A., Esrafili, M. D., & Mermer, ?. (2019). Development of TiO2 nanofibers based semiconducting humidity sensor: adsorption kinetics and DFT computations. Materials Chemistry and Physics, 121981.

    (https://www.sciencedirect.com/science/article/pii/S0254058419307801)

  179. 179
    Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering

    Dalgic, A. D., Atila, D., Karatas, A., Tezcaner, A., & Keskin, D. (2019). Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Materials Science and Engineering: C, 100, 735-746.

    (https://www.sciencedirect.com/science/article/pii/S0928493118326286)

  180. 180
    Dual effective core-shell electrospun scaffolds- Promoting osteoblast maturation and reducing bacteria activity

    De-Paula, M. M. M., Afewerki, S., Viana, B. C., Webster, T. J., Lobo, A. O., & Marciano, F. R. (2019). Dual effective core-shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity. Materials Science and Engineering: C, 103, 109778.

    (https://www.sciencedirect.com/science/article/pii/S0928493118309032)

  181. 181
    Effects of UV Exposure Time on Nanofiber Wound Dressing Properties During Sterilization

    Tort, S., Demir?z, F. T., Y?ld?z, S., & Acartürk, F. (2019). Effects of UV exposure time on nanofiber wound dressing properties during sterilization. Journal of Pharmaceutical Innovation, 1-8.

    (https://link.springer.com/article/10.1007/s12247-019-09383-7)

  182. 182
    Electron Microscopy Investigation of CeO2 Nanofibers Supported Noble Metal (Pt, Pd and Ru) Catalysts for CO Oxidation

    Liu, Z., Lu, Y., Li, J., Wang, Y., Wujcik, E. K., & Wang, R. (2019). Electron Microscopy Investigation of CeO 2 Nanofibers Supported Noble Metal (Pt, Pd and Ru) Catalysts for CO Oxidation. Microscopy and Microanalysis, 25(S2), 2176-2177.

    (https://doi.org/10.1017/S1431927619011619)

  183. 183
    Electrospinning and Electrospun Nanofibers- Methods, Materials, and Applications

    Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical reviews, 119(8), 5298-5415.

    (https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.8b00593)

  184. 184
    Electrospinning- The Setup and Procedure

    Long, Y. Z., Yan, X., Wang, X. X., Zhang, J., & Yu, M. (2019). Electrospinning: The Setup and Procedure. In Electrospinning: Nanofabrication and Applications (pp. 21-52). William Andrew Publishing.

    (https://www.sciencedirect.com/science/article/pii/B9780323512701000029)

  185. 185
    Electrospray Deposition of Discrete Nanoparticles- Studies on Pulsed-Field Electrospray and Analytical Applications

    Kremer, M. H. (2019). Electrospray Deposition of Discrete Nanoparticles: Studies on Pulsed-Field Electrospray and Analytical Applications.

    (https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/9p290g61r)

  186. 186
    Electrospun Fibers of Polyester, with Both Nano- and Micron Diameters, Loaded with Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds

    Ferna?ndez, J., Ruiz-Ruiz, M., & Sarasua, J. R. (2019). Electrospun Fibers of Polyester, with Both Nano-and Micron Diameters, Loaded with Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds. ACS Applied Polymer Materials.

    (https://pubs.acs.org/doi/abs/10.1021/acsapm.9b00108)

  187. 187
    Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material

    Gurler, E. B., Ergul, N. M., Ozbek, B., Ekren, N., Oktar, F. N., Haskoylu, M. E., … & Temiz, A. F. (2019). Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material. Materials Science and Engineering: C, 100, 798-808.

    (https://www.sciencedirect.com/science/article/pii/S0928493118329187)

  188. 188
    Examination of novel electrosprayed biogenic hydroxyapatite coatings on Si3N4 and Si3N4 /MWCNT ceramic composite

    Zagyva, T., Balázsi, K., & Balázsi, C. (2019). Examination of novel electrosprayed biogenic hydroxyapatite coatings on Si3N4 and Si3N4/MWCNT ceramic composite. PROCESSING AND APPLICATION OF CERAMICS, 13(2), 132-138.

    (http://www.doiserbia.nb.rs/Article.aspx?ID=1820-61311902132Z#.XXKXgJMzbfY)

  189. 189
    Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning

    Valtera, J., Kalous, T., Pokorny, P., Batka, O., Bilek, M., Chvojka, J., … & Beran, J. (2019). Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning. Scientific reports, 9(1), 1801. (https://www.nature.com/articles/s41598-019-38557-z)

  190. 190
    Flexible S/DPAN/KB Nanofiber Composite as Binder-Free Cathodes for Li-S Batteries

    Kalybekkyzy, S., Mentbayeva, A., Kahraman, M. V., Zhang, Y., & Bakenov, Z. (2019). Flexible S/DPAN/KB Nanofiber Composite as Binder-Free Cathodes for Li-S Batteries. Journal of The Electrochemical Society, 166(3), A5396-A5402. (http://jes.ecsdl.org/content/166/3/A5396.short)

  191. 191
    Hydrogen production from sodium borohydride originated compounds- Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity

    Filiz, B. C., & Figen, A. K. (2019). Hydrogen production from sodium borohydride originated compounds: Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity. International Journal of Hydrogen Energy, 44(20), 9883-9895. (https://www.sciencedirect.com/science/article/abs/pii/S0360319919306974)

  192. 192
    Improved catalytic performance of metal oxide catalysts fabricated with electrospinning in ammonia borane methanolysis for hydrogen production

    Figen, A. K. (2019). Improved catalytic performance of metal oxide catalysts fabricated with electrospinning in ammonia borane methanolysis for hydrogen production. International Journal of Hydrogen Energy. (https://www.sciencedirect.com/science/article/abs/pii/S0360319919305610)

  193. 193
    Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for letal Tissue Regeneration

    Goonoo, N., Fahmi, A., Jonas, U., Gimié, F., Arsa, I. A., Bénard, S., … & Bhaw-Luximon, A. (2019). Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for letal Tissue Regeneration. ACS applied materials & interfaces, 11(6), 5834-5850. (https://pubs.acs.org/doi/abs/10.1021/acsami.8b19929)

  194. 194
    Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification

    Gürsoy, M., ?zcan, F., & Karaman, M. (2019). Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification. Journal of Applied Polymer Science, 136(31), 47768.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.47768)

  195. 195
    Kinetics and Isotherms Studies of the Adsorption of Hg(II) onto Iron Modified Montmorillonite/Polycaprolactone Nanofiber Membrane

    Somera, L. R., Cuazon, R., Cruz, J. K., & Diaz, L. J. (2019, May). Kinetics and Isotherms Studies of the Adsorption of Hg (II) onto Iron Modified Montmorillonite/Polycaprolactone Nanofiber Membrane. In IOP Conference Series: Materials Science and Engineering (Vol. 540, No. 1, p. 012005). IOP Publishing.

    (https://iopscience.iop.org/article/10.1088/1757-899X/540/1/012005/meta)

  196. 196
    Latest Progress in Electrospun Nanofibers for Wound Healing Applications

    Memic, A., Abudula, T., Mohammed, H. S., Joshi Navare, K., Colombani, T., & Bencherif, S. A. (2019). Latest progress in electrospun nanofibers for wound healing applications. ACS Applied Bio Materials, 2(3), 952-969.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00637)

  197. 197
    Lipase-Responsive Electrospun Theranostic Wound Dressing for Simultaneous Recognition and Treatment of Wound Infection

    Singh, H., Li, W., Kazemian, M. R., Yang, R., Yang, C., Logsetty, S., & Liu, S. (2019). Lipase-Responsive Electrospun Theranostic Wound Dressing for Simultaneous Recognition and Treatment of Wound Infection. ACS Applied Bio Materials, 2(5), 2028-2036.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.9b00076)

  198. 198
    Needle-less Electrospinning

    Yan, G., Niu, H., & Lin, T. (2019). Needle-less Electrospinning. In Electrospinning: Nanofabrication and Applications (pp. 219-247). William Andrew Publishing.

    (https://www.sciencedirect.com/science/article/pii/B9780323512701000078)

  199. 199
    Novel biodegradable and non-fouling systems for controlled-release based on poly(ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings

    Sanchez-Rexach, E., Iturri, J., Fernandez, J., Meaurio, E., Toca-Herrera, J. L., & Sarasua, J. R. (2019). Novel biodegradable and non-fouling systems for controlled-release based on poly (ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings. RSC Advances, 9(42), 24154-24163.

    (https://pubs.rsc.org/en/content/articlelanding/ra/2019/c9ra04398e#!divAbstract)

  200. 200
    On the detailed mechanical response investigation of PHBV/PCL and PHBV/PLGA electrospun mats

    Bal, B., Tugluca, I. B., Koc, N., & Isoglu, I. A. (2019). On the detailed mechanical response investigation of PHBV/PCL and PHBV/PLGA electrospun mats. Materials Research Express, 6(6), 065411.

    (https://iopscience.iop.org/article/10.1088/2053-1591/ab0eaa/meta)

  201. 201
    Patent - US10197498B2 - Compositions and methods for measurement of analytes

    Ruckh, T. T., Balaconis, M. K., Clark, H. A., & Skipwith, C. (2019). U.S. Patent Application No. 10/197,498.

    (https://patents.google.com/patent/US10197498B2/en?oq=US10197498B2+)

  202. 202
    Patent - US10211449B2 - Battery electrode and method

    Ozkan, C. S., Ozkan, M., & Favors, Z. (2019). U.S. Patent Application No. 10/211,449. (https://patents.google.com/patent/US10211449B2/en)

  203. 203
    Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose

    Sezer, U. A., Sanko, V., Gulmez, M., Aru, B., Sayman, E., Aktekin, A., … & Sezer, S. (2019). Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose. Materials Science and Engineering: C, 99, 1141-1152.

    (https://www.sciencedirect.com/science/article/pii/S0928493118327024)

  204. 204
    Polypropylene microfibers via solution electrospinning under ambient conditions

    Acik, G., & Altinkok, C. (2019). Polypropylene microfibers via solution electrospinning under ambient conditions. Journal of Applied Polymer Science, 136(45), 48199.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.48199)

  205. 205
    Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application

    Cesur, S., Oktar, F. N., Ekren, N., Kilic, O., Alkaya, D. B., Seyhan, S. A., … & Gunduz, O. (2019). Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application. Journal of the Australian Ceramic Society, 1-11.

    (https://link.springer.com/article/10.1007/s41779-019-00363-1)

  206. 206
    Preparation of electrospun PCL-based scaffolds by mono/multi-functionalized GO

    Basar, A. O., Sadhu, V., & Sasmazel, H. T. (2019). Preparation of electrospun PCL-based scaffolds by mono/multi-functionalized GO. Biomedical Materials, 14(4), 045012.

    (https://iopscience.iop.org/article/10.1088/1748-605X/ab2035/meta)

  207. 207
    Proses parametreleri ve ??zelti ?zelliklerinin koaksiyal elektropüskürtme y?netemi ile elde edilen nanopartiküllerin morfolojik ?zellikleri üzerine etkisi

    Mete, A. A., & Atay, E. PROSES PARAMETRELER? VE ??ZELT? ?ZELL?KLER?N?N KOAKS?YAL ELEKTROP?SK?RTME Y?NTEM? ?LE ELDE ED?LEN NANOPART?K?LLER?N MORFOLOJ?K ?ZELL?KLER? ?ZER?NE ETK?S?. GIDA, 44(3), 534-551.

    (https://dergipark.org.tr/tr/pub/gida/article/531149)

  208. 208
    Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends

    Akinalan Balik, B., & Argin, S. (2019). Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends. Journal of Applied Polymer Science, 48294.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.48294)

  209. 209
    Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior

    Ghobeira, R., Philips, C., Liefooghe, L., Verdonck, M., Asadian, M., Cools, P., … & Morent, R. (2019). Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior. Applied Surface Science, 485, 204-221.

    (https://www.sciencedirect.com/science/article/pii/S0169433219311018)

  210. 210
    Synthesis and characterization of calcium zirconate nanofibers produced by electrospinning

    Storti, E., Himcinschi, C., Kortus, J., & Aneziris, C. G. (2019). Synthesis and characterization of calcium zirconate nanofibers produced by electrospinning. Journal of the European Ceramic Society.

    (https://www.sciencedirect.com/science/article/abs/pii/S0955221919305485)

  211. 211
    Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability

    I?ik, C., Arabaci, G., Do?a?, Y. I., Deveci, ?., & Teke, M. (2019). Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability. Materials Science and Engineering: C, 99, 1226-1235.

    (https://www.sciencedirect.com/science/article/pii/S0928493118309317)

  212. 212
    Synthesis and mechanical properties of para‐aramid nanofibers

    Trexler, M. M., Hoffman, C., Smith, D. A., Montalbano, T. J., Yeager, M. P., Trigg, D., … & Xia, Z. (2019). Synthesis and mechanical properties of para‐aramid nanofibers. Journal of Polymer Science Part B: Polymer Physics, 57(10), 563-573.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/polb.24810)

  213. 213
    Nerve guidance conduit application of magnesium alloys

    ?zkan, O. (2019). NERVE GUIDANCE CONDUIT APPLICATION OF MAGNESIUM ALLOYS.

    (http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/6176)

  214. 214
    Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization- Physical, chemical and biological properties

    Asadian, M., Onyshchenko, I., Thiry, D., Cools, P., Declercq, H., Snyders, R., … & De Geyter, N. (2019). Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization: Physical, chemical and biological properties. Applied Surface Science, 479, 942-952.

    (https://www.sciencedirect.com/science/article/pii/S0169433219305203)

  215. 215
    Electrospun nanofibers for biomedical applications
  216. 216
    Lamination of Separators to Electrodes using Electrospinning

    Springer Bernhard Christian, Frankenberger Martin, Pettinger Karl-Heinz. PLoS One; San Francisco Vol. 15, Iss. 1, (Jan 2020): e0227903. DOI:10.1371/journal.pone.0227903

    https://search.proquest.com/openview/a108579a31b0ed99b86e3d8f49ae9148/1?pq-origsite=gscholar&cbl=1436336

  217. 217
    Electrospinning of Y2O3- and MgO-stabilized zirconia nanofibers and characterization of the evolving phase composition and morphology during thermal treatment

    Claudia Heuera, Enrico Stortia, Thomas Graule, Christos G.Aneziris.

    EMPA, Eidgen?ssische Materialprüfungs- und Forschungsanstalt, Laboratory for High Performance Ceramics, ?berlandstr. 129, 8600, Dübendorf, Switzerland.

    https://www.sciencedirect.com/science/article/pii/S0272884220302601?via%3Dihub

  218. 218
    Measurement of impact characteristics in a string using electrospun PVDF nanofibers strain sensors

    Rahul KumarSingh, Sun WohLye, JianminMiao.

    School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.

    https://www.sciencedirect.com/science/article/abs/pii/S0924424719317200?via%3Dihub

  219. 219
    Radicals and Ions Formed in Plasma-Treated Organic Solvents: A Mechanistic Investigation to Rationalize the Enhancement of Electrospinnability of Polycaprolactone

    Silvia Grande, Francesco Tampieri, Anton Nikiforov, Agata Giardina, Antonio Barbon, Pieter Cools, Rino Morent, Cristina Paradisi, Ester Marotta and Nathalie De Geyter.
    Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium/Department of Chemical Sciences, Università degli Studi di Padova, Padua, Italy.

    https://www.frontiersin.org/articles/10.3389/fchem.2019.00344/full

  220. Aging effect of atmospheric pressure plasma jet treated polycaprolactone polymer solutions on electrospinning properties

    Silvia Grande,Joachim Van Guyse, Anton Y. Nikiforov, Iuliia Onyshchenko, Mahtab Asadian, Rino Morent, Richard Hoogenboom and Nathalie De Geyte.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/app.48914

  221. Electrospinning of linezolid loaded PLGA nanofibers: effect of solvents on its spinnability, drug delivery, mechanical properties, and antibacterial activities

    Tugba Eren Boncu, Nurten Ozdemir and Aylin Uskudar Guclu.

    https://www.tandfonline.com/doi/full/10.1080/03639045.2019.1706550

  222. Halochromic composite nanofibrous mat for wound healing monitoring
    Ayben Pakolpak??l, Bilgen Osman, Elif Tümay ?zer, Yasemin ?ahan, Beh?et Becerir, G?khan G?ktalay and Esra Karaca
    2020 IOP Publishing Ltd
    Materials Research Express, Volume 6, Number 12
  223. Synthesis and morphology optimization of electrospun SiBNC nanofibers
    Kamal Asadi-Pakdel, Rouhollah Mehdinavaz Aghdama, Mehdi Shahedi Asl and Mohammad Ali Faghihi Sani.